public class FMRegressionModel extends RegressionModel<Vector,FMRegressionModel> implements FMRegressorParams, MLWritable
FMRegressor.| Modifier and Type | Method and Description |
|---|---|
FMRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Matrix |
factors() |
IntParam |
factorSize()
Param for dimensionality of the factors (>= 0)
|
BooleanParam |
fitIntercept()
Param for whether to fit an intercept term.
|
BooleanParam |
fitLinear()
Param for whether to fit linear term (aka 1-way term)
|
DoubleParam |
initStd()
Param for standard deviation of initial coefficients
|
double |
intercept() |
Vector |
linear() |
static FMRegressionModel |
load(String path) |
IntParam |
maxIter()
Param for maximum number of iterations (>= 0).
|
DoubleParam |
miniBatchFraction()
Param for mini-batch fraction, must be in range (0, 1]
|
int |
numFeatures()
Returns the number of features the model was trained on.
|
double |
predict(Vector features)
Predict label for the given features.
|
static MLReader<FMRegressionModel> |
read() |
DoubleParam |
regParam()
Param for regularization parameter (>= 0).
|
LongParam |
seed()
Param for random seed.
|
Param<String> |
solver()
The solver algorithm for optimization.
|
DoubleParam |
stepSize()
Param for Step size to be used for each iteration of optimization (> 0).
|
DoubleParam |
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).
|
String |
toString() |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
featuresCol, labelCol, predictionCol, setFeaturesCol, setPredictionCol, transform, transformSchematransform, transform, transformparamsgetFactorSize, getFitLinear, getInitStd, getMiniBatchFractionvalidateAndTransformSchemagetLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwngetMaxItergetStepSizegetFitInterceptgetRegParamgetWeightColsave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static MLReader<FMRegressionModel> read()
public static FMRegressionModel load(String path)
public final IntParam factorSize()
FactorizationMachinesParamsfactorSize in interface FactorizationMachinesParamspublic final BooleanParam fitLinear()
FactorizationMachinesParamsfitLinear in interface FactorizationMachinesParamspublic final DoubleParam miniBatchFraction()
FactorizationMachinesParamsminiBatchFraction in interface FactorizationMachinesParamspublic final DoubleParam initStd()
FactorizationMachinesParamsinitStd in interface FactorizationMachinesParamspublic final Param<String> solver()
FactorizationMachinesParamssolver in interface HasSolversolver in interface FactorizationMachinesParamspublic final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic final DoubleParam regParam()
HasRegParamregParam in interface HasRegParampublic final BooleanParam fitIntercept()
HasFitInterceptfitIntercept in interface HasFitInterceptpublic final LongParam seed()
HasSeedpublic final DoubleParam tol()
HasTolpublic DoubleParam stepSize()
HasStepSizestepSize in interface HasStepSizepublic final IntParam maxIter()
HasMaxItermaxIter in interface HasMaxIterpublic String uid()
Identifiableuid in interface Identifiablepublic double intercept()
public Vector linear()
public Matrix factors()
public int numFeatures()
PredictionModelnumFeatures in class PredictionModel<Vector,FMRegressionModel>public double predict(Vector features)
PredictionModeltransform() and output predictionCol.predict in class PredictionModel<Vector,FMRegressionModel>features - (undocumented)public FMRegressionModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<FMRegressionModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Object