public class IsotonicRegressionModel extends Model<IsotonicRegressionModel> implements IsotonicRegressionBase, MLWritable
For detailed rules see org.apache.spark.mllib.regression.IsotonicRegressionModel.predict().
param: oldModel A IsotonicRegressionModel
model trained by IsotonicRegression.
| Modifier and Type | Method and Description |
|---|---|
Vector |
boundaries()
Boundaries in increasing order for which predictions are known.
|
IsotonicRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
IntParam |
featureIndex()
Param for the index of the feature if
featuresCol is a vector column (default: 0), no
effect otherwise. |
Param<String> |
featuresCol()
Param for features column name.
|
BooleanParam |
isotonic()
Param for whether the output sequence should be isotonic/increasing (true) or
antitonic/decreasing (false).
|
Param<String> |
labelCol()
Param for label column name.
|
static IsotonicRegressionModel |
load(String path) |
int |
numFeatures() |
double |
predict(double value) |
Param<String> |
predictionCol()
Param for prediction column name.
|
Vector |
predictions()
Predictions associated with the boundaries at the same index, monotone because of isotonic
regression.
|
static MLReader<IsotonicRegressionModel> |
read() |
IsotonicRegressionModel |
setFeatureIndex(int value) |
IsotonicRegressionModel |
setFeaturesCol(String value) |
IsotonicRegressionModel |
setPredictionCol(String value) |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformparamsextractWeightedLabeledPoints, getFeatureIndex, getIsotonic, hasWeightCol, validateAndTransformSchemagetFeaturesColgetLabelColgetPredictionColgetWeightColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializesavepublic static MLReader<IsotonicRegressionModel> read()
public static IsotonicRegressionModel load(String path)
public final BooleanParam isotonic()
IsotonicRegressionBaseisotonic in interface IsotonicRegressionBasepublic final IntParam featureIndex()
IsotonicRegressionBasefeaturesCol is a vector column (default: 0), no
effect otherwise.featureIndex in interface IsotonicRegressionBasepublic final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> featuresCol()
HasFeaturesColfeaturesCol in interface HasFeaturesColpublic String uid()
Identifiableuid in interface Identifiablepublic IsotonicRegressionModel setFeaturesCol(String value)
public IsotonicRegressionModel setPredictionCol(String value)
public IsotonicRegressionModel setFeatureIndex(int value)
public Vector boundaries()
public Vector predictions()
public IsotonicRegressionModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<IsotonicRegressionModel>extra - (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public double predict(double value)
public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic int numFeatures()
public String toString()
toString in interface IdentifiabletoString in class Object