public class LogisticRegressionModel extends GeneralizedLinearModel implements ClassificationModel, scala.Serializable, Saveable, PMMLExportable
param: weights Weights computed for every feature. param: intercept Intercept computed for this model. (Only used in Binary Logistic Regression. In Multinomial Logistic Regression, the intercepts will not be a single value, so the intercepts will be part of the weights.) param: numFeatures the dimension of the features. param: numClasses the number of possible outcomes for k classes classification problem in Multinomial Logistic Regression. By default, it is binary logistic regression so numClasses will be set to 2.
| Constructor and Description | 
|---|
| LogisticRegressionModel(Vector weights,
                       double intercept)Constructs a  LogisticRegressionModelwith weights and intercept for binary classification. | 
| LogisticRegressionModel(Vector weights,
                       double intercept,
                       int numFeatures,
                       int numClasses) | 
| Modifier and Type | Method and Description | 
|---|---|
| LogisticRegressionModel | clearThreshold()Clears the threshold so that  predictwill output raw prediction scores. | 
| scala.Option<Object> | getThreshold()Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions. | 
| double | intercept() | 
| static LogisticRegressionModel | load(SparkContext sc,
    String path) | 
| int | numClasses() | 
| int | numFeatures() | 
| void | save(SparkContext sc,
    String path)Save this model to the given path. | 
| LogisticRegressionModel | setThreshold(double threshold)Sets the threshold that separates positive predictions from negative predictions
 in Binary Logistic Regression. | 
| String | toString()Print a summary of the model. | 
| Vector | weights() | 
predict, predictpredict, predict, predictpublic LogisticRegressionModel(Vector weights, double intercept, int numFeatures, int numClasses)
public LogisticRegressionModel(Vector weights, double intercept)
LogisticRegressionModel with weights and intercept for binary classification.weights - (undocumented)intercept - (undocumented)public static LogisticRegressionModel load(SparkContext sc, String path)
public Vector weights()
weights in class GeneralizedLinearModelpublic double intercept()
intercept in class GeneralizedLinearModelpublic int numFeatures()
public int numClasses()
public LogisticRegressionModel setThreshold(double threshold)
threshold - (undocumented)public scala.Option<Object> getThreshold()
public LogisticRegressionModel clearThreshold()
predict will output raw prediction scores.
 It is only used for binary classification.public void save(SparkContext sc, String path)
SaveableThis saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
 The model may be loaded using Loader.load.
 
public String toString()
GeneralizedLinearModeltoString in class GeneralizedLinearModel