Packages

object SVMWithSGD extends Serializable

Top-level methods for calling SVM.

Annotations
@Since( "0.8.0" )
Source
SVM.scala
Note

Labels used in SVM should be {0, 1}.

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SVMWithSGD
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. def train(input: RDD[LabeledPoint], numIterations: Int): SVMModel

    Train a SVM model given an RDD of (label, features) pairs.

    Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using a step size of 1.0. We use the entire data set to update the gradient in each iteration.

    input

    RDD of (label, array of features) pairs.

    numIterations

    Number of iterations of gradient descent to run.

    returns

    a SVMModel which has the weights and offset from training.

    Annotations
    @Since( "0.8.0" )
    Note

    Labels used in SVM should be {0, 1}

  2. def train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double): SVMModel

    Train a SVM model given an RDD of (label, features) pairs.

    Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. We use the entire data set to update the gradient in each iteration.

    input

    RDD of (label, array of features) pairs.

    numIterations

    Number of iterations of gradient descent to run.

    stepSize

    Step size to be used for each iteration of Gradient Descent.

    regParam

    Regularization parameter.

    returns

    a SVMModel which has the weights and offset from training.

    Annotations
    @Since( "0.8.0" )
    Note

    Labels used in SVM should be {0, 1}

  3. def train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double, miniBatchFraction: Double): SVMModel

    Train a SVM model given an RDD of (label, features) pairs.

    Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. Each iteration uses miniBatchFraction fraction of the data to calculate the gradient.

    input

    RDD of (label, array of features) pairs.

    numIterations

    Number of iterations of gradient descent to run.

    stepSize

    Step size to be used for each iteration of gradient descent.

    regParam

    Regularization parameter.

    miniBatchFraction

    Fraction of data to be used per iteration.

    Annotations
    @Since( "0.8.0" )
    Note

    Labels used in SVM should be {0, 1}

  4. def train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, regParam: Double, miniBatchFraction: Double, initialWeights: Vector): SVMModel

    Train a SVM model given an RDD of (label, features) pairs.

    Train a SVM model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. Each iteration uses miniBatchFraction fraction of the data to calculate the gradient. The weights used in gradient descent are initialized using the initial weights provided.

    input

    RDD of (label, array of features) pairs.

    numIterations

    Number of iterations of gradient descent to run.

    stepSize

    Step size to be used for each iteration of gradient descent.

    regParam

    Regularization parameter.

    miniBatchFraction

    Fraction of data to be used per iteration.

    initialWeights

    Initial set of weights to be used. Array should be equal in size to the number of features in the data.

    Annotations
    @Since( "0.8.0" )
    Note

    Labels used in SVM should be {0, 1}.