Class MultilayerPerceptronClassificationModel
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<M>
org.apache.spark.ml.PredictionModel<FeaturesType,M>
org.apache.spark.ml.classification.ClassificationModel<FeaturesType,M>
org.apache.spark.ml.classification.ProbabilisticClassificationModel<Vector,MultilayerPerceptronClassificationModel>
org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,ClassifierParams
,MultilayerPerceptronParams
,ProbabilisticClassifierParams
,Params
,HasBlockSize
,HasFeaturesCol
,HasLabelCol
,HasMaxIter
,HasPredictionCol
,HasProbabilityCol
,HasRawPredictionCol
,HasSeed
,HasSolver
,HasStepSize
,HasThresholds
,HasTol
,PredictorParams
,HasTrainingSummary<MultilayerPerceptronClassificationTrainingSummary>
,Identifiable
,MLWritable
public class MultilayerPerceptronClassificationModel
extends ProbabilisticClassificationModel<Vector,MultilayerPerceptronClassificationModel>
implements MultilayerPerceptronParams, Serializable, MLWritable, HasTrainingSummary<MultilayerPerceptronClassificationTrainingSummary>
Classification model based on the Multilayer Perceptron.
Each layer has sigmoid activation function, output layer has softmax.
param: uid uid param: weights the weights of layers
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Method Summary
Modifier and TypeMethodDescriptionfinal IntParam
Param for block size for stacking input data in matrices.Creates a copy of this instance with the same UID and some extra params.Evaluates the model on a test dataset.The initial weights of the model.final IntArrayParam
layers()
Layer sizes including input size and output size.final IntParam
maxIter()
Param for maximum number of iterations (>= 0).int
Number of classes (values which the label can take).int
Returns the number of features the model was trained on.double
Predict label for the given features.predictRaw
(Vector features) Raw prediction for each possible label.read()
final LongParam
seed()
Param for random seed.solver()
The solver algorithm for optimization.stepSize()
Param for Step size to be used for each iteration of optimization (> 0).summary()
Gets summary of model on training set.final DoubleParam
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).toString()
uid()
An immutable unique ID for the object and its derivatives.weights()
write()
Returns anMLWriter
instance for this ML instance.Methods inherited from class org.apache.spark.ml.classification.ProbabilisticClassificationModel
normalizeToProbabilitiesInPlace, predictProbability, probabilityCol, setProbabilityCol, setThresholds, thresholds, transform, transformSchema
Methods inherited from class org.apache.spark.ml.classification.ClassificationModel
rawPredictionCol, setRawPredictionCol, transformImpl
Methods inherited from class org.apache.spark.ml.PredictionModel
featuresCol, labelCol, predictionCol, setFeaturesCol, setPredictionCol
Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transform
Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.param.shared.HasBlockSize
getBlockSize
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
featuresCol, getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol, labelCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIter
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol, predictionCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasProbabilityCol
getProbabilityCol, probabilityCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionCol
getRawPredictionCol, rawPredictionCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasStepSize
getStepSize
Methods inherited from interface org.apache.spark.ml.param.shared.HasThresholds
getThresholds, thresholds
Methods inherited from interface org.apache.spark.ml.util.HasTrainingSummary
hasSummary, setSummary
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.classification.MultilayerPerceptronParams
getInitialWeights, getLayers
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
Methods inherited from interface org.apache.spark.ml.classification.ProbabilisticClassifierParams
validateAndTransformSchema
-
Method Details
-
read
-
load
-
layers
Description copied from interface:MultilayerPerceptronParams
Layer sizes including input size and output size.- Specified by:
layers
in interfaceMultilayerPerceptronParams
- Returns:
- (undocumented)
-
solver
Description copied from interface:MultilayerPerceptronParams
The solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs"- Specified by:
solver
in interfaceHasSolver
- Specified by:
solver
in interfaceMultilayerPerceptronParams
- Returns:
- (undocumented)
-
initialWeights
Description copied from interface:MultilayerPerceptronParams
The initial weights of the model.- Specified by:
initialWeights
in interfaceMultilayerPerceptronParams
- Returns:
- (undocumented)
-
blockSize
Description copied from interface:HasBlockSize
Param for block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data..- Specified by:
blockSize
in interfaceHasBlockSize
- Returns:
- (undocumented)
-
stepSize
Description copied from interface:HasStepSize
Param for Step size to be used for each iteration of optimization (> 0).- Specified by:
stepSize
in interfaceHasStepSize
- Returns:
- (undocumented)
-
tol
Description copied from interface:HasTol
Param for the convergence tolerance for iterative algorithms (>= 0). -
maxIter
Description copied from interface:HasMaxIter
Param for maximum number of iterations (>= 0).- Specified by:
maxIter
in interfaceHasMaxIter
- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeed
Param for random seed. -
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
weights
-
numFeatures
public int numFeatures()Description copied from class:PredictionModel
Returns the number of features the model was trained on. If unknown, returns -1- Overrides:
numFeatures
in classPredictionModel<Vector,
MultilayerPerceptronClassificationModel>
-
summary
Gets summary of model on training set. An exception is thrown ifhasSummary
is false.- Specified by:
summary
in interfaceHasTrainingSummary<MultilayerPerceptronClassificationTrainingSummary>
- Returns:
- (undocumented)
-
evaluate
Evaluates the model on a test dataset.- Parameters:
dataset
- Test dataset to evaluate model on.- Returns:
- (undocumented)
-
predict
Predict label for the given features. This internal method is used to implementtransform()
and outputPredictionModel.predictionCol()
.- Overrides:
predict
in classClassificationModel<Vector,
MultilayerPerceptronClassificationModel> - Parameters:
features
- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classModel<MultilayerPerceptronClassificationModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritable
Returns anMLWriter
instance for this ML instance.- Specified by:
write
in interfaceMLWritable
- Returns:
- (undocumented)
-
predictRaw
Description copied from class:ClassificationModel
Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implementtransform()
and outputClassificationModel.rawPredictionCol()
.- Specified by:
predictRaw
in classClassificationModel<Vector,
MultilayerPerceptronClassificationModel> - Parameters:
features
- (undocumented)- Returns:
- vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
-
numClasses
public int numClasses()Description copied from class:ClassificationModel
Number of classes (values which the label can take).- Specified by:
numClasses
in classClassificationModel<Vector,
MultilayerPerceptronClassificationModel>
-
toString
- Specified by:
toString
in interfaceIdentifiable
- Overrides:
toString
in classObject
-