Package org.apache.spark.ml.clustering
Class BisectingKMeans
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,BisectingKMeansParams
,Params
,HasDistanceMeasure
,HasFeaturesCol
,HasMaxIter
,HasPredictionCol
,HasSeed
,HasWeightCol
,DefaultParamsWritable
,Identifiable
,MLWritable
public class BisectingKMeans
extends Estimator<BisectingKMeansModel>
implements BisectingKMeansParams, DefaultParamsWritable
A bisecting k-means algorithm based on the paper "A comparison of document clustering techniques"
by Steinbach, Karypis, and Kumar, with modification to fit Spark.
The algorithm starts from a single cluster that contains all points.
Iteratively it finds divisible clusters on the bottom level and bisects each of them using
k-means, until there are
k
leaf clusters in total or no leaf clusters are divisible.
The bisecting steps of clusters on the same level are grouped together to increase parallelism.
If bisecting all divisible clusters on the bottom level would result more than k
leaf clusters,
larger clusters get higher priority.
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Param for The distance measure.Param for features column name.Fits a model to the input data.final IntParam
k()
The desired number of leaf clusters.static BisectingKMeans
final IntParam
maxIter()
Param for maximum number of iterations (>= 0).final DoubleParam
The minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).Param for prediction column name.static MLReader<T>
read()
final LongParam
seed()
Param for random seed.setDistanceMeasure
(String value) setFeaturesCol
(String value) setK
(int value) setMaxIter
(int value) setMinDivisibleClusterSize
(double value) setPredictionCol
(String value) setSeed
(long value) setWeightCol
(String value) Sets the value of paramweightCol()
.transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.Param for weight column name.Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.clustering.BisectingKMeansParams
getK, getMinDivisibleClusterSize, validateAndTransformSchema
Methods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
write
Methods inherited from interface org.apache.spark.ml.param.shared.HasDistanceMeasure
getDistanceMeasure
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIter
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightCol
Methods inherited from interface org.apache.spark.ml.util.Identifiable
toString
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
BisectingKMeans
-
BisectingKMeans
public BisectingKMeans()
-
-
Method Details
-
load
-
read
-
k
Description copied from interface:BisectingKMeansParams
The desired number of leaf clusters. Must be > 1. Default: 4. The actual number could be smaller if there are no divisible leaf clusters.- Specified by:
k
in interfaceBisectingKMeansParams
- Returns:
- (undocumented)
-
minDivisibleClusterSize
Description copied from interface:BisectingKMeansParams
The minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).- Specified by:
minDivisibleClusterSize
in interfaceBisectingKMeansParams
- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightCol
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightCol
in interfaceHasWeightCol
- Returns:
- (undocumented)
-
distanceMeasure
Description copied from interface:HasDistanceMeasure
Param for The distance measure. Supported options: 'euclidean' and 'cosine'.- Specified by:
distanceMeasure
in interfaceHasDistanceMeasure
- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionCol
Param for prediction column name.- Specified by:
predictionCol
in interfaceHasPredictionCol
- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeed
Param for random seed. -
featuresCol
Description copied from interface:HasFeaturesCol
Param for features column name.- Specified by:
featuresCol
in interfaceHasFeaturesCol
- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIter
Param for maximum number of iterations (>= 0).- Specified by:
maxIter
in interfaceHasMaxIter
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classEstimator<BisectingKMeansModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-
setFeaturesCol
-
setPredictionCol
-
setK
-
setMaxIter
-
setSeed
-
setMinDivisibleClusterSize
-
setDistanceMeasure
-
setWeightCol
Sets the value of paramweightCol()
. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.- Parameters:
value
- (undocumented)- Returns:
- (undocumented)
-
fit
Description copied from class:Estimator
Fits a model to the input data.- Specified by:
fit
in classEstimator<BisectingKMeansModel>
- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchema
in classPipelineStage
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-