RegressionEvaluator#
- class pyspark.ml.connect.evaluation.RegressionEvaluator(*, metricName='rmse', labelCol='label', predictionCol='prediction')[source]#
Evaluator for Regression, which expects input columns prediction and label. Supported metrics are ‘rmse’, ‘mse’ and ‘r2’.
New in version 3.5.0.
Examples
>>> from pyspark.ml.connect.evaluation import RegressionEvaluator >>> eva = RegressionEvaluator(metricName='mse') >>> dataset = spark.createDataFrame( ... [(1.0, 2.0), (-1.0, -1.5)], schema=['label', 'prediction'] ... ) >>> eva.evaluate(dataset) 0.625 >>> eva.isLargerBetter() False
Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
evaluate
(dataset[, params])Evaluates the output with optional parameters.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of labelCol or its default value.
Gets the value of metricName or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
getParam
(paramName)Gets a param by its name.
Gets the value of predictionCol or its default value.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
Indicates whether the metric returned by
evaluate()
should be maximized (True, default) or minimized (False).isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Load Estimator / Transformer / Model / Evaluator from provided cloud storage path.
loadFromLocal
(path)Load Estimator / Transformer / Model / Evaluator from provided local path.
save
(path, *[, overwrite])Save Estimator / Transformer / Model / Evaluator to provided cloud storage path.
saveToLocal
(path, *[, overwrite])Save Estimator / Transformer / Model / Evaluator to provided local path.
set
(param, value)Sets a parameter in the embedded param map.
Attributes
Returns all params ordered by name.
Methods Documentation
- clear(param)#
Clears a param from the param map if it has been explicitly set.
- copy(extra=None)#
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy()
, and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
Params
Copy of this instance
- evaluate(dataset, params=None)#
Evaluates the output with optional parameters.
New in version 3.5.0.
- Parameters
- dataset
pyspark.sql.DataFrame
a dataset that contains labels/observations and predictions
- paramsdict, optional
an optional param map that overrides embedded params
- dataset
- Returns
- float
metric
- explainParam(param)#
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams()#
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra=None)#
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
- getLabelCol()#
Gets the value of labelCol or its default value.
- getMetricName()#
Gets the value of metricName or its default value.
New in version 3.5.0.
- getOrDefault(param)#
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getParam(paramName)#
Gets a param by its name.
- getPredictionCol()#
Gets the value of predictionCol or its default value.
- hasDefault(param)#
Checks whether a param has a default value.
- hasParam(paramName)#
Tests whether this instance contains a param with a given (string) name.
- isDefined(param)#
Checks whether a param is explicitly set by user or has a default value.
- isLargerBetter()[source]#
Indicates whether the metric returned by
evaluate()
should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.New in version 1.5.0.
- isSet(param)#
Checks whether a param is explicitly set by user.
- classmethod load(path)#
Load Estimator / Transformer / Model / Evaluator from provided cloud storage path.
New in version 3.5.0.
- classmethod loadFromLocal(path)#
Load Estimator / Transformer / Model / Evaluator from provided local path.
New in version 3.5.0.
- save(path, *, overwrite=False)#
Save Estimator / Transformer / Model / Evaluator to provided cloud storage path.
New in version 3.5.0.
- saveToLocal(path, *, overwrite=False)#
Save Estimator / Transformer / Model / Evaluator to provided local path.
New in version 3.5.0.
- set(param, value)#
Sets a parameter in the embedded param map.
Attributes Documentation
- labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
- metricName = Param(parent='undefined', name='metricName', doc="metric name for the regression evaluator, valid values are 'mse' and 'r2'")#
- params#
Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
- predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')#
- uid#
A unique id for the object.