pyspark.pandas.Series.cat.rename_categories#
- cat.rename_categories(new_categories)#
Rename categories.
- Parameters
- new_categorieslist-like, dict-like or callable
New categories which will replace old categories.
list-like: all items must be unique and the number of items in the new categories must match the existing number of categories.
dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored.
callable : a callable that is called on all items in the old categories and whose return values comprise the new categories.
- Returns
- catSeries
Categorical with removed categories
- Raises
- ValueError
If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories
See also
reorder_categories
Reorder categories.
add_categories
Add new categories.
remove_categories
Remove the specified categories.
remove_unused_categories
Remove categories which are not used.
set_categories
Set the categories to the specified ones.
Examples
>>> s = ps.Series(["a", "a", "b"], dtype="category") >>> s.cat.rename_categories([0, 1]) 0 0 1 0 2 1 dtype: category Categories (2, int64): [0, 1]
For dict-like
new_categories
, extra keys are ignored and categories not in the dictionary are passed through>>> s.cat.rename_categories({'a': 'A', 'c': 'C'}) 0 A 1 A 2 b dtype: category Categories (2, object): ['A', 'b']
You may also provide a callable to create the new categories
>>> s.cat.rename_categories(lambda x: x.upper()) 0 A 1 A 2 B dtype: category Categories (2, object): ['A', 'B']