Packages

  • package root
    Definition Classes
    root
  • package org
    Definition Classes
    root
  • package apache
    Definition Classes
    org
  • package spark

    Core Spark functionality.

    Core Spark functionality. org.apache.spark.SparkContext serves as the main entry point to Spark, while org.apache.spark.rdd.RDD is the data type representing a distributed collection, and provides most parallel operations.

    In addition, org.apache.spark.rdd.PairRDDFunctions contains operations available only on RDDs of key-value pairs, such as groupByKey and join; org.apache.spark.rdd.DoubleRDDFunctions contains operations available only on RDDs of Doubles; and org.apache.spark.rdd.SequenceFileRDDFunctions contains operations available on RDDs that can be saved as SequenceFiles. These operations are automatically available on any RDD of the right type (e.g. RDD[(Int, Int)] through implicit conversions.

    Java programmers should reference the org.apache.spark.api.java package for Spark programming APIs in Java.

    Classes and methods marked with Experimental are user-facing features which have not been officially adopted by the Spark project. These are subject to change or removal in minor releases.

    Classes and methods marked with Developer API are intended for advanced users want to extend Spark through lower level interfaces. These are subject to changes or removal in minor releases.

    Definition Classes
    apache
  • package ml

    DataFrame-based machine learning APIs to let users quickly assemble and configure practical machine learning pipelines.

    DataFrame-based machine learning APIs to let users quickly assemble and configure practical machine learning pipelines.

    Definition Classes
    spark
  • package attribute

    The ML pipeline API uses DataFrames as ML datasets.

    ML attributes

    The ML pipeline API uses DataFrames as ML datasets. Each dataset consists of typed columns, e.g., string, double, vector, etc. However, knowing only the column type may not be sufficient to handle the data properly. For instance, a double column with values 0.0, 1.0, 2.0, ... may represent some label indices, which cannot be treated as numeric values in ML algorithms, and, for another instance, we may want to know the names and types of features stored in a vector column. ML attributes are used to provide additional information to describe columns in a dataset.

    ML columns

    A column with ML attributes attached is called an ML column. The data in ML columns are stored as double values, i.e., an ML column is either a scalar column of double values or a vector column. Columns of other types must be encoded into ML columns using transformers. We use Attribute to describe a scalar ML column, and AttributeGroup to describe a vector ML column. ML attributes are stored in the metadata field of the column schema.

    Definition Classes
    ml
  • Attribute
  • AttributeGroup
  • AttributeType
  • BinaryAttribute
  • NominalAttribute
  • NumericAttribute
  • UnresolvedAttribute

class NominalAttribute extends Attribute

A nominal attribute.

Source
attributes.scala
Linear Supertypes
Attribute, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NominalAttribute
  2. Attribute
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Value Members

  1. def attrType: AttributeType

    Attribute type.

    Attribute type.

    Definition Classes
    NominalAttributeAttribute
  2. def equals(other: Any): Boolean
    Definition Classes
    NominalAttribute → AnyRef → Any
  3. def getNumValues: Option[Int]

    Get the number of values, either from numValues or from values.

    Get the number of values, either from numValues or from values. Return None if unknown.

  4. def getValue(index: Int): String

    Gets a value given its index.

  5. def hasValue(value: String): Boolean

    Tests whether this attribute contains a specific value.

  6. def hashCode(): Int
    Definition Classes
    NominalAttribute → AnyRef → Any
  7. val index: Option[Int]

    Index of the attribute.

    Index of the attribute. None if it is not set.

    Definition Classes
    NominalAttributeAttribute
  8. def indexOf(value: String): Int

    Index of a specific value.

  9. def isNominal: Boolean

    Tests whether this attribute is nominal, true for NominalAttribute and BinaryAttribute.

    Tests whether this attribute is nominal, true for NominalAttribute and BinaryAttribute.

    Definition Classes
    NominalAttributeAttribute
  10. def isNumeric: Boolean

    Tests whether this attribute is numeric, true for NumericAttribute and BinaryAttribute.

    Tests whether this attribute is numeric, true for NumericAttribute and BinaryAttribute.

    Definition Classes
    NominalAttributeAttribute
  11. val isOrdinal: Option[Boolean]
  12. val name: Option[String]

    Name of the attribute.

    Name of the attribute. None if it is not set.

    Definition Classes
    NominalAttributeAttribute
  13. val numValues: Option[Int]
  14. def toMetadata(): Metadata

    Converts to ML metadata

    Converts to ML metadata

    Definition Classes
    Attribute
  15. def toMetadata(existingMetadata: Metadata): Metadata

    Converts to ML metadata with some existing metadata.

    Converts to ML metadata with some existing metadata.

    Definition Classes
    Attribute
  16. def toString(): String
    Definition Classes
    Attribute → AnyRef → Any
  17. def toStructField(): StructField

    Converts to a StructField.

    Converts to a StructField.

    Definition Classes
    Attribute
  18. def toStructField(existingMetadata: Metadata): StructField

    Converts to a StructField with some existing metadata.

    Converts to a StructField with some existing metadata.

    existingMetadata

    existing metadata to carry over

    Definition Classes
    Attribute
  19. val values: Option[Array[String]]
  20. def withIndex(index: Int): NominalAttribute

    Copy with a new index.

    Copy with a new index.

    Definition Classes
    NominalAttributeAttribute
  21. def withName(name: String): NominalAttribute

    Copy with a new name.

    Copy with a new name.

    Definition Classes
    NominalAttributeAttribute
  22. def withNumValues(numValues: Int): NominalAttribute

    Copy with a new numValues and empty values.

  23. def withValues(first: String, others: String*): NominalAttribute

    Copy with new values and empty numValues.

    Copy with new values and empty numValues.

    Annotations
    @varargs()
  24. def withValues(values: Array[String]): NominalAttribute

    Copy with new values and empty numValues.

  25. def withoutIndex: NominalAttribute

    Copy without the index.

    Copy without the index.

    Definition Classes
    NominalAttributeAttribute
  26. def withoutName: NominalAttribute

    Copy without the name.

    Copy without the name.

    Definition Classes
    NominalAttributeAttribute
  27. def withoutNumValues: NominalAttribute

    Copy without the numValues.

  28. def withoutValues: NominalAttribute

    Copy without the values.