org.apache.spark.ml.classification
MultilayerPerceptronClassifier
Companion object MultilayerPerceptronClassifier
class MultilayerPerceptronClassifier extends ProbabilisticClassifier[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel] with MultilayerPerceptronParams with DefaultParamsWritable
Classifier trainer based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax. Number of inputs has to be equal to the size of feature vectors. Number of outputs has to be equal to the total number of labels.
- Annotations
- @Since("1.5.0")
- Source
- MultilayerPerceptronClassifier.scala
- Grouped
- Alphabetic
- By Inheritance
- MultilayerPerceptronClassifier
- DefaultParamsWritable
- MLWritable
- MultilayerPerceptronParams
- HasBlockSize
- HasSolver
- HasStepSize
- HasTol
- HasMaxIter
- HasSeed
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
- final val featuresCol: Param[String]
Param for features column name.
Param for features column name.
- Definition Classes
- HasFeaturesCol
- final val labelCol: Param[String]
Param for label column name.
Param for label column name.
- Definition Classes
- HasLabelCol
- final val layers: IntArrayParam
Layer sizes including input size and output size.
Layer sizes including input size and output size.
- Definition Classes
- MultilayerPerceptronParams
- Annotations
- @Since("1.5.0")
- final val maxIter: IntParam
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
- HasMaxIter
- final val predictionCol: Param[String]
Param for prediction column name.
Param for prediction column name.
- Definition Classes
- HasPredictionCol
- final val probabilityCol: Param[String]
Param for Column name for predicted class conditional probabilities.
Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.
- Definition Classes
- HasProbabilityCol
- final val rawPredictionCol: Param[String]
Param for raw prediction (a.k.a.
Param for raw prediction (a.k.a. confidence) column name.
- Definition Classes
- HasRawPredictionCol
- final val seed: LongParam
Param for random seed.
Param for random seed.
- Definition Classes
- HasSeed
- val stepSize: DoubleParam
Param for Step size to be used for each iteration of optimization (> 0).
Param for Step size to be used for each iteration of optimization (> 0).
- Definition Classes
- HasStepSize
- val thresholds: DoubleArrayParam
Param for Thresholds in multi-class classification to adjust the probability of predicting each class.
Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.
- Definition Classes
- HasThresholds
- final val tol: DoubleParam
Param for the convergence tolerance for iterative algorithms (>= 0).
Param for the convergence tolerance for iterative algorithms (>= 0).
- Definition Classes
- HasTol
Members
- implicit class LogStringContext extends AnyRef
- Definition Classes
- Logging
- final def clear(param: Param[_]): MultilayerPerceptronClassifier.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
- def copy(extra: ParamMap): MultilayerPerceptronClassifier
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- MultilayerPerceptronClassifier → Predictor → Estimator → PipelineStage → Params
- Annotations
- @Since("1.5.0")
- def explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
- def explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
- final def extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
- def fit(dataset: Dataset[_]): MultilayerPerceptronClassificationModel
Fits a model to the input data.
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[MultilayerPerceptronClassificationModel]
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.
- dataset
input dataset
- paramMaps
An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted models, matching the input parameter maps
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): MultilayerPerceptronClassificationModel
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
- dataset
input dataset
- paramMap
Parameter map. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): MultilayerPerceptronClassificationModel
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
- dataset
input dataset
- firstParamPair
the first param pair, overrides embedded params
- otherParamPairs
other param pairs. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0") @varargs()
- final def get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
- final def getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
- final def getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
- def getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
- final def hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
- final def isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
- final def isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
- lazy val params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
- def save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
- final def set[T](param: Param[T], value: T): MultilayerPerceptronClassifier.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- Predictor → PipelineStage
- val uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- MultilayerPerceptronClassifier → Identifiable
- Annotations
- @Since("1.5.0")
- def write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
Parameter setters
- def setFeaturesCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- Predictor
- def setLabelCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- Predictor
- def setLayers(value: Array[Int]): MultilayerPerceptronClassifier.this.type
Sets the value of param layers.
Sets the value of param layers.
- Annotations
- @Since("1.5.0")
- def setMaxIter(value: Int): MultilayerPerceptronClassifier.this.type
Set the maximum number of iterations.
Set the maximum number of iterations. Default is 100.
- Annotations
- @Since("1.5.0")
- def setPredictionCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- Predictor
- def setProbabilityCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- ProbabilisticClassifier
- def setRawPredictionCol(value: String): MultilayerPerceptronClassifier
- Definition Classes
- Classifier
- def setSeed(value: Long): MultilayerPerceptronClassifier.this.type
Set the seed for weights initialization if weights are not set
Set the seed for weights initialization if weights are not set
- Annotations
- @Since("1.5.0")
- def setStepSize(value: Double): MultilayerPerceptronClassifier.this.type
Sets the value of param stepSize (applicable only for solver "gd").
Sets the value of param stepSize (applicable only for solver "gd"). Default is 0.03.
- Annotations
- @Since("2.0.0")
- def setThresholds(value: Array[Double]): MultilayerPerceptronClassifier
- Definition Classes
- ProbabilisticClassifier
- def setTol(value: Double): MultilayerPerceptronClassifier.this.type
Set the convergence tolerance of iterations.
Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6.
- Annotations
- @Since("1.5.0")
Parameter getters
- final def getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
- final def getLabelCol: String
- Definition Classes
- HasLabelCol
- final def getLayers: Array[Int]
- Definition Classes
- MultilayerPerceptronParams
- Annotations
- @Since("1.5.0")
- final def getMaxIter: Int
- Definition Classes
- HasMaxIter
- final def getPredictionCol: String
- Definition Classes
- HasPredictionCol
- final def getProbabilityCol: String
- Definition Classes
- HasProbabilityCol
- final def getRawPredictionCol: String
- Definition Classes
- HasRawPredictionCol
- final def getSeed: Long
- Definition Classes
- HasSeed
- final def getSolver: String
- Definition Classes
- HasSolver
- final def getStepSize: Double
- Definition Classes
- HasStepSize
- def getThresholds: Array[Double]
- Definition Classes
- HasThresholds
- final def getTol: Double
- Definition Classes
- HasTol
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
- final val blockSize: IntParam
Param for block size for stacking input data in matrices.
Param for block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data..
- Definition Classes
- HasBlockSize
- final val initialWeights: Param[Vector]
The initial weights of the model.
The initial weights of the model.
- Definition Classes
- MultilayerPerceptronParams
- Annotations
- @Since("2.0.0")
- final val solver: Param[String]
The solver algorithm for optimization.
The solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs"
- Definition Classes
- MultilayerPerceptronParams → HasSolver
- Annotations
- @Since("2.0.0")
(expert-only) Parameter setters
- def setBlockSize(value: Int): MultilayerPerceptronClassifier.this.type
Sets the value of param blockSize.
Sets the value of param blockSize. Default is 128.
- Annotations
- @Since("1.5.0")
- def setInitialWeights(value: Vector): MultilayerPerceptronClassifier.this.type
Sets the value of param initialWeights.
Sets the value of param initialWeights.
- Annotations
- @Since("2.0.0")
- def setSolver(value: String): MultilayerPerceptronClassifier.this.type
Sets the value of param solver.
Sets the value of param solver. Default is "l-bfgs".
- Annotations
- @Since("2.0.0")
(expert-only) Parameter getters
- final def getBlockSize: Int
- Definition Classes
- HasBlockSize
- final def getInitialWeights: Vector
- Definition Classes
- MultilayerPerceptronParams
- Annotations
- @Since("2.0.0")