Packages

class PowerIterationClustering extends PowerIterationClusteringParams with DefaultParamsWritable

Power Iteration Clustering (PIC), a scalable graph clustering algorithm developed by Lin and Cohen. From the abstract: PIC finds a very low-dimensional embedding of a dataset using truncated power iteration on a normalized pair-wise similarity matrix of the data.

This class is not yet an Estimator/Transformer, use assignClusters method to run the PowerIterationClustering algorithm.

Annotations
@Since("2.4.0")
Source
PowerIterationClustering.scala
See also

Spectral clustering (Wikipedia)

Linear Supertypes
DefaultParamsWritable, MLWritable, PowerIterationClusteringParams, HasWeightCol, HasMaxIter, Params, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. PowerIterationClustering
  2. DefaultParamsWritable
  3. MLWritable
  4. PowerIterationClusteringParams
  5. HasWeightCol
  6. HasMaxIter
  7. Params
  8. Serializable
  9. Identifiable
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. val dstCol: Param[String]

    Name of the input column for destination vertex IDs.

    Name of the input column for destination vertex IDs. Default: "dst"

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")
  2. final val k: IntParam

    The number of clusters to create (k).

    The number of clusters to create (k). Must be > 1. Default: 2.

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")
  3. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  4. val srcCol: Param[String]

    Param for the name of the input column for source vertex IDs.

    Param for the name of the input column for source vertex IDs. Default: "src"

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")
  5. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol

Members

  1. def assignClusters(dataset: Dataset[_]): DataFrame

    Run the PIC algorithm and returns a cluster assignment for each input vertex.

    Run the PIC algorithm and returns a cluster assignment for each input vertex.

    dataset

    A dataset with columns src, dst, weight representing the affinity matrix, which is the matrix A in the PIC paper. Suppose the src column value is i, the dst column value is j, the weight column value is similarity sij which must be nonnegative. This is a symmetric matrix and hence sij = sji. For any (i, j) with nonzero similarity, there should be either (i, j, sij) or (j, i, sji) in the input. Rows with i = j are ignored, because we assume sij = 0.0.

    returns

    A dataset that contains columns of vertex id and the corresponding cluster for the id. The schema of it will be:

    • id: Long
    • cluster: Int
    Annotations
    @Since("2.4.0")
  2. final def clear(param: Param[_]): PowerIterationClustering.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  3. def copy(extra: ParamMap): PowerIterationClustering

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")
  4. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  5. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  6. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  7. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  8. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  9. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  10. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  11. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  12. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  13. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  14. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  15. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  16. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  17. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
  18. final def set[T](param: Param[T], value: T): PowerIterationClustering.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  19. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  20. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    PowerIterationClusteringIdentifiable
    Annotations
    @Since("2.4.0")
  21. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DefaultParamsWritableMLWritable

Parameter setters

  1. def setDstCol(value: String): PowerIterationClustering.this.type

    Annotations
    @Since("2.4.0")
  2. def setK(value: Int): PowerIterationClustering.this.type

    Annotations
    @Since("2.4.0")
  3. def setMaxIter(value: Int): PowerIterationClustering.this.type

    Annotations
    @Since("2.4.0")
  4. def setSrcCol(value: String): PowerIterationClustering.this.type

    Annotations
    @Since("2.4.0")
  5. def setWeightCol(value: String): PowerIterationClustering.this.type

    Annotations
    @Since("2.4.0")

Parameter getters

  1. def getDstCol: String

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")
  2. def getK: Int

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")
  3. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  4. def getSrcCol: String

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")
  5. final def getWeightCol: String

    Definition Classes
    HasWeightCol

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val initMode: Param[String]

    Param for the initialization algorithm.

    Param for the initialization algorithm. This can be either "random" to use a random vector as vertex properties, or "degree" to use a normalized sum of similarities with other vertices. Default: random.

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")

(expert-only) Parameter setters

  1. def setInitMode(value: String): PowerIterationClustering.this.type

    Annotations
    @Since("2.4.0")

(expert-only) Parameter getters

  1. def getInitMode: String

    Definition Classes
    PowerIterationClusteringParams
    Annotations
    @Since("2.4.0")