class VectorSizeHint extends Transformer with HasInputCol with HasHandleInvalid with DefaultParamsWritable
A feature transformer that adds size information to the metadata of a vector column. VectorAssembler needs size information for its input columns and cannot be used on streaming dataframes without this metadata.
Note: VectorSizeHint modifies inputCol
to include size metadata and does not have an outputCol.
- Annotations
- @Since("2.3.0")
- Source
- VectorSizeHint.scala
- Grouped
- Alphabetic
- By Inheritance
- VectorSizeHint
- DefaultParamsWritable
- MLWritable
- HasHandleInvalid
- HasInputCol
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
- val handleInvalid: Param[String]
Param for how to handle invalid entries.
Param for how to handle invalid entries. Invalid vectors include nulls and vectors with the wrong size. The options are
skip
(filter out rows with invalid vectors),error
(throw an error) andoptimistic
(do not check the vector size, and keep all rows).error
by default.Note: Users should take care when setting this param to
optimistic
. The use of theoptimistic
option will prevent the transformer from validating the sizes of vectors ininputCol
. A mismatch between the metadata of a column and its contents could result in unexpected behaviour or errors when using that column.- Definition Classes
- VectorSizeHint → HasHandleInvalid
- Annotations
- @Since("2.3.0")
- final val inputCol: Param[String]
Param for input column name.
Param for input column name.
- Definition Classes
- HasInputCol
- val size: IntParam
The size of Vectors in
inputCol
.The size of Vectors in
inputCol
.- Annotations
- @Since("2.3.0")
Members
- implicit class LogStringContext extends AnyRef
- Definition Classes
- Logging
- final def clear(param: Param[_]): VectorSizeHint.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
- def copy(extra: ParamMap): VectorSizeHint.this.type
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- VectorSizeHint → Transformer → PipelineStage → Params
- Annotations
- @Since("2.3.0")
- def explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
- def explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
- final def extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
- final def get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
- final def getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
- final def getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
- def getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
- def getSize: Int
group getParam
group getParam
- Annotations
- @Since("2.3.0")
- final def hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
- final def isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
- final def isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
- lazy val params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
- def save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
- final def set[T](param: Param[T], value: T): VectorSizeHint.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
- def toString(): String
- Definition Classes
- VectorSizeHint → Identifiable → AnyRef → Any
- Annotations
- @Since("3.0.0")
- def transform(dataset: Dataset[_]): DataFrame
Transforms the input dataset.
Transforms the input dataset.
- Definition Classes
- VectorSizeHint → Transformer
- Annotations
- @Since("2.3.0")
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
input dataset
- paramMap
additional parameters, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
input dataset
- firstParamPair
the first param pair, overwrite embedded params
- otherParamPairs
other param pairs, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0") @varargs()
- def transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- VectorSizeHint → PipelineStage
- Annotations
- @Since("2.3.0")
- val uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- VectorSizeHint → Identifiable
- Annotations
- @Since("2.3.0")
- def write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
Parameter setters
- def setHandleInvalid(value: String): VectorSizeHint.this.type
- Annotations
- @Since("2.3.0")
- def setInputCol(value: String): VectorSizeHint.this.type
- Annotations
- @Since("2.3.0")
- def setSize(value: Int): VectorSizeHint.this.type
- Annotations
- @Since("2.3.0")
Parameter getters
- final def getHandleInvalid: String
- Definition Classes
- HasHandleInvalid
- final def getInputCol: String
- Definition Classes
- HasInputCol