Packages

  • package root
    Definition Classes
    root
  • package org
    Definition Classes
    root
  • package apache
    Definition Classes
    org
  • package spark

    Core Spark functionality.

    Core Spark functionality. org.apache.spark.SparkContext serves as the main entry point to Spark, while org.apache.spark.rdd.RDD is the data type representing a distributed collection, and provides most parallel operations.

    In addition, org.apache.spark.rdd.PairRDDFunctions contains operations available only on RDDs of key-value pairs, such as groupByKey and join; org.apache.spark.rdd.DoubleRDDFunctions contains operations available only on RDDs of Doubles; and org.apache.spark.rdd.SequenceFileRDDFunctions contains operations available on RDDs that can be saved as SequenceFiles. These operations are automatically available on any RDD of the right type (e.g. RDD[(Int, Int)] through implicit conversions.

    Java programmers should reference the org.apache.spark.api.java package for Spark programming APIs in Java.

    Classes and methods marked with Experimental are user-facing features which have not been officially adopted by the Spark project. These are subject to change or removal in minor releases.

    Classes and methods marked with Developer API are intended for advanced users want to extend Spark through lower level interfaces. These are subject to changes or removal in minor releases.

    Definition Classes
    apache
  • package ml

    DataFrame-based machine learning APIs to let users quickly assemble and configure practical machine learning pipelines.

    DataFrame-based machine learning APIs to let users quickly assemble and configure practical machine learning pipelines.

    Definition Classes
    spark
  • package recommendation
    Definition Classes
    ml
  • ALS
  • ALSModel

class ALSModel extends Model[ALSModel] with ALSModelParams with MLWritable

Model fitted by ALS.

Annotations
@Since("1.3.0")
Source
ALS.scala
Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. ALSModel
  2. MLWritable
  3. ALSModelParams
  4. HasBlockSize
  5. HasPredictionCol
  6. Model
  7. Transformer
  8. PipelineStage
  9. Logging
  10. Params
  11. Serializable
  12. Identifiable
  13. AnyRef
  14. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. val itemCol: Param[String]

    Param for the column name for item ids.

    Param for the column name for item ids. Ids must be integers. Other numeric types are supported for this column, but will be cast to integers as long as they fall within the integer value range. Default: "item"

    Definition Classes
    ALSModelParams
  2. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  3. val userCol: Param[String]

    Param for the column name for user ids.

    Param for the column name for user ids. Ids must be integers. Other numeric types are supported for this column, but will be cast to integers as long as they fall within the integer value range. Default: "user"

    Definition Classes
    ALSModelParams

Members

  1. implicit class LogStringContext extends AnyRef
    Definition Classes
    Logging
  1. final def clear(param: Param[_]): ALSModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def copy(extra: ParamMap): ALSModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    ALSModelModelTransformerPipelineStageParams
    Annotations
    @Since("1.5.0")
  3. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  4. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  5. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  6. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  7. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  8. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  9. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  10. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  11. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  12. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  13. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  14. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  15. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  16. val itemFactors: DataFrame
  17. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  18. var parent: Estimator[ALSModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  19. val rank: Int
    Annotations
    @Since("1.4.0")
  20. def recommendForAllItems(numUsers: Int): DataFrame

    Returns top numUsers users recommended for each item, for all items.

    Returns top numUsers users recommended for each item, for all items.

    numUsers

    max number of recommendations for each item

    returns

    a DataFrame of (itemCol: Int, recommendations), where recommendations are stored as an array of (userCol: Int, rating: Float) Rows.

    Annotations
    @Since("2.2.0")
  21. def recommendForAllUsers(numItems: Int): DataFrame

    Returns top numItems items recommended for each user, for all users.

    Returns top numItems items recommended for each user, for all users.

    numItems

    max number of recommendations for each user

    returns

    a DataFrame of (userCol: Int, recommendations), where recommendations are stored as an array of (itemCol: Int, rating: Float) Rows.

    Annotations
    @Since("2.2.0")
  22. def recommendForItemSubset(dataset: Dataset[_], numUsers: Int): DataFrame

    Returns top numUsers users recommended for each item id in the input data set.

    Returns top numUsers users recommended for each item id in the input data set. Note that if there are duplicate ids in the input dataset, only one set of recommendations per unique id will be returned.

    dataset

    a Dataset containing a column of item ids. The column name must match itemCol.

    numUsers

    max number of recommendations for each item.

    returns

    a DataFrame of (itemCol: Int, recommendations), where recommendations are stored as an array of (userCol: Int, rating: Float) Rows.

    Annotations
    @Since("2.3.0")
  23. def recommendForUserSubset(dataset: Dataset[_], numItems: Int): DataFrame

    Returns top numItems items recommended for each user id in the input data set.

    Returns top numItems items recommended for each user id in the input data set. Note that if there are duplicate ids in the input dataset, only one set of recommendations per unique id will be returned.

    dataset

    a Dataset containing a column of user ids. The column name must match userCol.

    numItems

    max number of recommendations for each user.

    returns

    a DataFrame of (userCol: Int, recommendations), where recommendations are stored as an array of (itemCol: Int, rating: Float) Rows.

    Annotations
    @Since("2.3.0")
  24. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
  25. final def set[T](param: Param[T], value: T): ALSModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  26. def setParent(parent: Estimator[ALSModel]): ALSModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  27. def toString(): String
    Definition Classes
    ALSModelIdentifiable → AnyRef → Any
    Annotations
    @Since("3.0.0")
  28. def transform(dataset: Dataset[_]): DataFrame

    Transforms the input dataset.

    Transforms the input dataset.

    Definition Classes
    ALSModelTransformer
    Annotations
    @Since("2.0.0")
  29. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since("2.0.0")
  30. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since("2.0.0") @varargs()
  31. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    ALSModelPipelineStage
    Annotations
    @Since("1.3.0")
  32. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    ALSModelIdentifiable
    Annotations
    @Since("1.4.0")
  33. val userFactors: DataFrame
  34. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    ALSModelMLWritable
    Annotations
    @Since("1.6.0")

Parameter setters

  1. def setItemCol(value: String): ALSModel.this.type

    Annotations
    @Since("1.4.0")
  2. def setPredictionCol(value: String): ALSModel.this.type

    Annotations
    @Since("1.3.0")
  3. def setUserCol(value: String): ALSModel.this.type

    Annotations
    @Since("1.4.0")

Parameter getters

  1. def getItemCol: String

    Definition Classes
    ALSModelParams
  2. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  3. def getUserCol: String

    Definition Classes
    ALSModelParams

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val blockSize: IntParam

    Param for block size for stacking input data in matrices.

    Param for block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data..

    Definition Classes
    HasBlockSize
  2. val coldStartStrategy: Param[String]

    Param for strategy for dealing with unknown or new users/items at prediction time.

    Param for strategy for dealing with unknown or new users/items at prediction time. This may be useful in cross-validation or production scenarios, for handling user/item ids the model has not seen in the training data. Supported values: - "nan": predicted value for unknown ids will be NaN. - "drop": rows in the input DataFrame containing unknown ids will be dropped from the output DataFrame containing predictions. Default: "nan".

    Definition Classes
    ALSModelParams

(expert-only) Parameter setters

  1. def setBlockSize(value: Int): ALSModel.this.type

    Set block size for stacking input data in matrices.

    Set block size for stacking input data in matrices. Default is 4096.

    Annotations
    @Since("3.0.0")
  2. def setColdStartStrategy(value: String): ALSModel.this.type

    Annotations
    @Since("2.2.0")

(expert-only) Parameter getters

  1. final def getBlockSize: Int

    Definition Classes
    HasBlockSize
  2. def getColdStartStrategy: String

    Definition Classes
    ALSModelParams