class Strategy extends Serializable
Stores all the configuration options for tree construction
- Annotations
- @Since("1.0.0")
- Source
- Strategy.scala
- Alphabetic
- By Inheritance
- Strategy
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new Strategy(algo: Algo.Algo, impurity: Impurity, maxDepth: Int, numClasses: Int, maxBins: Int, categoricalFeaturesInfo: Map[Integer, Integer])
Java-friendly constructor for org.apache.spark.mllib.tree.configuration.Strategy
Java-friendly constructor for org.apache.spark.mllib.tree.configuration.Strategy
- Annotations
- @Since("1.1.0")
- new Strategy(algo: Algo.Algo, impurity: Impurity, maxDepth: Int, numClasses: Int, maxBins: Int, quantileCalculationStrategy: QuantileStrategy.QuantileStrategy, categoricalFeaturesInfo: Map[Int, Int], minInstancesPerNode: Int, minInfoGain: Double, maxMemoryInMB: Int, subsamplingRate: Double, useNodeIdCache: Boolean, checkpointInterval: Int)
Backwards compatible constructor for org.apache.spark.mllib.tree.configuration.Strategy
Backwards compatible constructor for org.apache.spark.mllib.tree.configuration.Strategy
- Annotations
- @Since("1.0.0")
- new Strategy(algo: Algo.Algo, impurity: Impurity, maxDepth: Int, numClasses: Int = 2, maxBins: Int = 32, quantileCalculationStrategy: QuantileStrategy.QuantileStrategy = Sort, categoricalFeaturesInfo: Map[Int, Int] = Map[Int, Int](), minInstancesPerNode: Int = 1, minInfoGain: Double = 0.0, maxMemoryInMB: Int = 256, subsamplingRate: Double = 1, useNodeIdCache: Boolean = false, checkpointInterval: Int = 10, minWeightFractionPerNode: Double = 0.0, bootstrap: Boolean = false)
- algo
Learning goal. Supported:
org.apache.spark.mllib.tree.configuration.Algo.Classification
,org.apache.spark.mllib.tree.configuration.Algo.Regression
- impurity
Criterion used for information gain calculation. Supported for Classification: org.apache.spark.mllib.tree.impurity.Gini, org.apache.spark.mllib.tree.impurity.Entropy. Supported for Regression: org.apache.spark.mllib.tree.impurity.Variance.
- maxDepth
Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes).
- numClasses
Number of classes for classification. (Ignored for regression.) Default value is 2 (binary classification).
- maxBins
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity.
- quantileCalculationStrategy
Algorithm for calculating quantiles. Supported:
org.apache.spark.mllib.tree.configuration.QuantileStrategy.Sort
- categoricalFeaturesInfo
A map storing information about the categorical variables and the number of discrete values they take. An entry (n to k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}.
- minInstancesPerNode
Minimum number of instances each child must have after split. Default value is 1. If a split cause left or right child to have less than minInstancesPerNode, this split will not be considered as a valid split.
- minInfoGain
Minimum information gain a split must get. Default value is 0.0. If a split has less information gain than minInfoGain, this split will not be considered as a valid split.
- maxMemoryInMB
Maximum memory in MB allocated to histogram aggregation. Default value is 256 MB. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size.
- subsamplingRate
Fraction of the training data used for learning decision tree.
- useNodeIdCache
If this is true, instead of passing trees to executors, the algorithm will maintain a separate RDD of node Id cache for each row.
- checkpointInterval
How often to checkpoint when the node Id cache gets updated. E.g. 10 means that the cache will get checkpointed every 10 updates. If the checkpoint directory is not set in org.apache.spark.SparkContext, this setting is ignored.
- Annotations
- @Since("1.3.0")
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- var algo: Algo.Algo
- Annotations
- @Since("1.0.0")
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- var categoricalFeaturesInfo: Map[Int, Int]
- Annotations
- @Since("1.0.0")
- var checkpointInterval: Int
- Annotations
- @Since("1.2.0")
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- def copy: Strategy
Returns a shallow copy of this instance.
Returns a shallow copy of this instance.
- Annotations
- @Since("1.2.0")
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def getAlgo(): Algo.Algo
- Annotations
- @Since("1.0.0") @BeanProperty()
- def getCategoricalFeaturesInfo(): Map[Int, Int]
- Annotations
- @Since("1.0.0") @BeanProperty()
- def getCheckpointInterval(): Int
- Annotations
- @Since("1.2.0") @BeanProperty()
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def getImpurity(): Impurity
- Annotations
- @Since("1.0.0") @BeanProperty()
- def getMaxBins(): Int
- Annotations
- @Since("1.0.0") @BeanProperty()
- def getMaxDepth(): Int
- Annotations
- @Since("1.0.0") @BeanProperty()
- def getMaxMemoryInMB(): Int
- Annotations
- @Since("1.0.0") @BeanProperty()
- def getMinInfoGain(): Double
- Annotations
- @Since("1.2.0") @BeanProperty()
- def getMinInstancesPerNode(): Int
- Annotations
- @Since("1.2.0") @BeanProperty()
- def getMinWeightFractionPerNode(): Double
- Annotations
- @Since("3.0.0") @BeanProperty()
- def getNumClasses(): Int
- Annotations
- @Since("1.2.0") @BeanProperty()
- def getQuantileCalculationStrategy(): QuantileStrategy.QuantileStrategy
- Annotations
- @Since("1.0.0") @BeanProperty()
- def getSubsamplingRate(): Double
- Annotations
- @Since("1.2.0") @BeanProperty()
- def getUseNodeIdCache(): Boolean
- Annotations
- @Since("1.2.0") @BeanProperty()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- var impurity: Impurity
- Annotations
- @Since("1.0.0")
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isMulticlassClassification: Boolean
- Annotations
- @Since("1.2.0")
- def isMulticlassWithCategoricalFeatures: Boolean
- Annotations
- @Since("1.2.0")
- var maxBins: Int
- Annotations
- @Since("1.0.0")
- var maxDepth: Int
- Annotations
- @Since("1.0.0")
- var maxMemoryInMB: Int
- Annotations
- @Since("1.0.0")
- var minInfoGain: Double
- Annotations
- @Since("1.2.0")
- var minInstancesPerNode: Int
- Annotations
- @Since("1.2.0")
- var minWeightFractionPerNode: Double
- Annotations
- @Since("3.0.0")
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- var numClasses: Int
- Annotations
- @Since("1.2.0")
- var quantileCalculationStrategy: QuantileStrategy.QuantileStrategy
- Annotations
- @Since("1.0.0")
- def setAlgo(algo: String): Unit
Sets Algorithm using a String.
Sets Algorithm using a String.
- Annotations
- @Since("1.2.0")
- def setAlgo(arg0: Algo.Algo): Unit
- Annotations
- @Since("1.0.0") @BeanProperty()
- def setCategoricalFeaturesInfo(categoricalFeaturesInfo: Map[Integer, Integer]): Unit
Sets categoricalFeaturesInfo using a Java Map.
Sets categoricalFeaturesInfo using a Java Map.
- Annotations
- @Since("1.2.0")
- def setCategoricalFeaturesInfo(arg0: Map[Int, Int]): Unit
- Annotations
- @Since("1.0.0") @BeanProperty()
- def setCheckpointInterval(arg0: Int): Unit
- Annotations
- @Since("1.2.0") @BeanProperty()
- def setImpurity(arg0: Impurity): Unit
- Annotations
- @Since("1.0.0") @BeanProperty()
- def setMaxBins(arg0: Int): Unit
- Annotations
- @Since("1.0.0") @BeanProperty()
- def setMaxDepth(arg0: Int): Unit
- Annotations
- @Since("1.0.0") @BeanProperty()
- def setMaxMemoryInMB(arg0: Int): Unit
- Annotations
- @Since("1.0.0") @BeanProperty()
- def setMinInfoGain(arg0: Double): Unit
- Annotations
- @Since("1.2.0") @BeanProperty()
- def setMinInstancesPerNode(arg0: Int): Unit
- Annotations
- @Since("1.2.0") @BeanProperty()
- def setMinWeightFractionPerNode(arg0: Double): Unit
- Annotations
- @Since("3.0.0") @BeanProperty()
- def setNumClasses(arg0: Int): Unit
- Annotations
- @Since("1.2.0") @BeanProperty()
- def setQuantileCalculationStrategy(arg0: QuantileStrategy.QuantileStrategy): Unit
- Annotations
- @Since("1.0.0") @BeanProperty()
- def setSubsamplingRate(arg0: Double): Unit
- Annotations
- @Since("1.2.0") @BeanProperty()
- def setUseNodeIdCache(arg0: Boolean): Unit
- Annotations
- @Since("1.2.0") @BeanProperty()
- var subsamplingRate: Double
- Annotations
- @Since("1.2.0")
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- var useNodeIdCache: Boolean
- Annotations
- @Since("1.2.0")
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)