org.apache.spark.mllib.tree.model
GradientBoostedTreesModel
Companion class GradientBoostedTreesModel
object GradientBoostedTreesModel extends Loader[GradientBoostedTreesModel] with Serializable
- Annotations
- @Since("1.3.0")
- Source
- treeEnsembleModels.scala
- Alphabetic
- By Inheritance
- GradientBoostedTreesModel
- Serializable
- Loader
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- def computeInitialPredictionAndError(data: RDD[LabeledPoint], initTreeWeight: Double, initTree: DecisionTreeModel, loss: Loss): RDD[(Double, Double)]
Compute the initial predictions and errors for a dataset for the first iteration of gradient boosting.
Compute the initial predictions and errors for a dataset for the first iteration of gradient boosting.
- returns
an RDD with each element being a zip of the prediction and error corresponding to every sample.
- Annotations
- @Since("1.4.0")
- def load(sc: SparkContext, path: String): GradientBoostedTreesModel
- sc
Spark context used for loading model files.
- path
Path specifying the directory to which the model was saved.
- returns
Model instance
- Definition Classes
- GradientBoostedTreesModel → Loader
- Annotations
- @Since("1.3.0")
- def updatePredictionError(data: RDD[LabeledPoint], predictionAndError: RDD[(Double, Double)], treeWeight: Double, tree: DecisionTreeModel, loss: Loss): RDD[(Double, Double)]
Update a zipped predictionError RDD (as obtained with computeInitialPredictionAndError)
Update a zipped predictionError RDD (as obtained with computeInitialPredictionAndError)
- returns
an RDD with each element being a zip of the prediction and error corresponding to each sample.
- Annotations
- @Since("1.4.0")