gapplyCollect
gapplyCollect.Rd
Groups the SparkDataFrame using the specified columns, applies the R function to each group and collects the result back to R as data.frame.
Usage
gapplyCollect(x, ...)
# S4 method for class 'GroupedData'
gapplyCollect(x, func)
# S4 method for class 'SparkDataFrame'
gapplyCollect(x, cols, func)
Details
func
is a function of two arguments. The first, usually named key
(though this is not enforced) corresponds to the grouping key, will be an
unnamed list
of length(cols)
length-one objects corresponding
to the grouping columns' values for the current group.
The second, herein x
, will be a local data.frame
with the
columns of the input not in cols
for the rows corresponding to key
.
The output of func
must be a data.frame
matching schema
–
in particular this means the names of the output data.frame
are irrelevant
See also
Other SparkDataFrame functions:
SparkDataFrame-class
,
agg()
,
alias()
,
arrange()
,
as.data.frame()
,
attach,SparkDataFrame-method
,
broadcast()
,
cache()
,
checkpoint()
,
coalesce()
,
collect()
,
colnames()
,
coltypes()
,
createOrReplaceTempView()
,
crossJoin()
,
cube()
,
dapplyCollect()
,
dapply()
,
describe()
,
dim()
,
distinct()
,
dropDuplicates()
,
dropna()
,
drop()
,
dtypes()
,
exceptAll()
,
except()
,
explain()
,
filter()
,
first()
,
gapply()
,
getNumPartitions()
,
group_by()
,
head()
,
hint()
,
histogram()
,
insertInto()
,
intersectAll()
,
intersect()
,
isLocal()
,
isStreaming()
,
join()
,
limit()
,
localCheckpoint()
,
merge()
,
mutate()
,
ncol()
,
nrow()
,
persist()
,
printSchema()
,
randomSplit()
,
rbind()
,
rename()
,
repartitionByRange()
,
repartition()
,
rollup()
,
sample()
,
saveAsTable()
,
schema()
,
selectExpr()
,
select()
,
showDF()
,
show()
,
storageLevel()
,
str()
,
subset()
,
summary()
,
take()
,
toJSON()
,
unionAll()
,
unionByName()
,
union()
,
unpersist()
,
unpivot()
,
withColumn()
,
withWatermark()
,
with()
,
write.df()
,
write.jdbc()
,
write.json()
,
write.orc()
,
write.parquet()
,
write.stream()
,
write.text()
Examples
if (FALSE) { # \dontrun{
# Computes the arithmetic mean of the second column by grouping
# on the first and third columns. Output the grouping values and the average.
df <- createDataFrame (
list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
c("a", "b", "c", "d"))
result <- gapplyCollect(
df,
c("a", "c"),
function(key, x) {
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
colnames(y) <- c("key_a", "key_c", "mean_b")
y
})
# We can also group the data and afterwards call gapply on GroupedData.
# For example:
gdf <- group_by(df, "a", "c")
result <- gapplyCollect(
gdf,
function(key, x) {
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
colnames(y) <- c("key_a", "key_c", "mean_b")
y
})
# Result
# ------
# key_a key_c mean_b
# 3 3 3.0
# 1 1 1.5
# Fits linear models on iris dataset by grouping on the 'Species' column and
# using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
# and 'Petal_Width' as training features.
df <- createDataFrame (iris)
result <- gapplyCollect(
df,
df$"Species",
function(key, x) {
m <- suppressWarnings(lm(Sepal_Length ~
Sepal_Width + Petal_Length + Petal_Width, x))
data.frame(t(coef(m)))
})
# Result
# ---------
# Model X.Intercept. Sepal_Width Petal_Length Petal_Width
# 1 0.699883 0.3303370 0.9455356 -0.1697527
# 2 1.895540 0.3868576 0.9083370 -0.6792238
# 3 2.351890 0.6548350 0.2375602 0.2521257
} # }