A set of SparkDataFrame functions working with NA values
nafunctions.Rd
dropna, na.omit - Returns a new SparkDataFrame omitting rows with null values.
Usage
dropna(x, how = c("any", "all"), minNonNulls = NULL, cols = NULL)
na.omit(object, ...)
fillna(x, value, cols = NULL)
# S4 method for class 'SparkDataFrame'
dropna(x, how = c("any", "all"), minNonNulls = NULL, cols = NULL)
# S4 method for class 'SparkDataFrame'
na.omit(object, how = c("any", "all"), minNonNulls = NULL, cols = NULL)
# S4 method for class 'SparkDataFrame'
fillna(x, value, cols = NULL)
Arguments
- x
a SparkDataFrame.
- how
"any" or "all". if "any", drop a row if it contains any nulls. if "all", drop a row only if all its values are null. if
minNonNulls
is specified, how is ignored.- minNonNulls
if specified, drop rows that have less than
minNonNulls
non-null values. This overwrites the how parameter.- cols
optional list of column names to consider. In
fillna
, columns specified in cols that do not have matching data type are ignored. For example, if value is a character, and subset contains a non-character column, then the non-character column is simply ignored.- object
a SparkDataFrame.
- ...
further arguments to be passed to or from other methods.
- value
value to replace null values with. Should be an integer, numeric, character or named list. If the value is a named list, then cols is ignored and value must be a mapping from column name (character) to replacement value. The replacement value must be an integer, numeric or character.
See also
Other SparkDataFrame functions:
SparkDataFrame-class
,
agg()
,
alias()
,
arrange()
,
as.data.frame()
,
attach,SparkDataFrame-method
,
broadcast()
,
cache()
,
checkpoint()
,
coalesce()
,
collect()
,
colnames()
,
coltypes()
,
createOrReplaceTempView()
,
crossJoin()
,
cube()
,
dapplyCollect()
,
dapply()
,
describe()
,
dim()
,
distinct()
,
dropDuplicates()
,
drop()
,
dtypes()
,
exceptAll()
,
except()
,
explain()
,
filter()
,
first()
,
gapplyCollect()
,
gapply()
,
getNumPartitions()
,
group_by()
,
head()
,
hint()
,
histogram()
,
insertInto()
,
intersectAll()
,
intersect()
,
isLocal()
,
isStreaming()
,
join()
,
limit()
,
localCheckpoint()
,
merge()
,
mutate()
,
ncol()
,
nrow()
,
persist()
,
printSchema()
,
randomSplit()
,
rbind()
,
rename()
,
repartitionByRange()
,
repartition()
,
rollup()
,
sample()
,
saveAsTable()
,
schema()
,
selectExpr()
,
select()
,
showDF()
,
show()
,
storageLevel()
,
str()
,
subset()
,
summary()
,
take()
,
toJSON()
,
unionAll()
,
unionByName()
,
union()
,
unpersist()
,
unpivot()
,
withColumn()
,
withWatermark()
,
with()
,
write.df()
,
write.jdbc()
,
write.json()
,
write.orc()
,
write.parquet()
,
write.stream()
,
write.text()
Examples
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
dropna(df)
} # }
if (FALSE) { # \dontrun{
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
fillna(df, 1)
fillna(df, list("age" = 20, "name" = "unknown"))
} # }