abstract class LDAModel extends Model[LDAModel] with LDAParams with Logging with MLWritable
- Grouped
- Alphabetic
- By Inheritance
- LDAModel
- MLWritable
- LDAParams
- HasCheckpointInterval
- HasSeed
- HasMaxIter
- HasFeaturesCol
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- implicit class LogStringContext extends AnyRef
- Definition Classes
- Logging
Abstract Value Members
- abstract def copy(extra: ParamMap): LDAModel
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- Model → Transformer → PipelineStage → Params
- abstract def isDistributed: Boolean
Indicates whether this instance is of type DistributedLDAModel
Indicates whether this instance is of type DistributedLDAModel
- Annotations
- @Since("1.6.0")
- abstract def write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0")
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
An alias for
getOrDefault()
.An alias for
getOrDefault()
.- Attributes
- protected
- Definition Classes
- Params
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- final val checkpointInterval: IntParam
Param for set checkpoint interval (>= 1) or disable checkpoint (-1).
Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.
- Definition Classes
- HasCheckpointInterval
- final def clear(param: Param[_]): LDAModel.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap
, and explicitly set Params are copied from and toparamMap
. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
the target instance, which should work with the same set of default Params as this source instance
- extra
extra params to be copied to the target's
paramMap
- returns
the target instance with param values copied
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
- protected
- Definition Classes
- Params
- def describeTopics(): DataFrame
- Annotations
- @Since("1.6.0")
- def describeTopics(maxTermsPerTopic: Int): DataFrame
Return the topics described by their top-weighted terms.
Return the topics described by their top-weighted terms.
- maxTermsPerTopic
Maximum number of terms to collect for each topic. Default value of 10.
- returns
Local DataFrame with one topic per Row, with columns:
- "topic": IntegerType: topic index
- "termIndices": ArrayType(IntegerType): term indices, sorted in order of decreasing term importance
- "termWeights": ArrayType(DoubleType): corresponding sorted term weights
- Annotations
- @Since("1.6.0")
- final val docConcentration: DoubleArrayParam
Concentration parameter (commonly named "alpha") for the prior placed on documents' distributions over topics ("theta").
Concentration parameter (commonly named "alpha") for the prior placed on documents' distributions over topics ("theta").
This is the parameter to a Dirichlet distribution, where larger values mean more smoothing (more regularization).
If not set by the user, then docConcentration is set automatically. If set to singleton vector [alpha], then alpha is replicated to a vector of length k in fitting. Otherwise, the docConcentration vector must be length k. (default = automatic)
Optimizer-specific parameter settings:
- EM
- Currently only supports symmetric distributions, so all values in the vector should be the same.
- Values should be greater than 1.0
- default = uniformly (50 / k) + 1, where 50/k is common in LDA libraries and +1 follows from Asuncion et al. (2009), who recommend a +1 adjustment for EM.
- Online
- Values should be greater than or equal to 0
- default = uniformly (1.0 / k), following the implementation from here.
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- EM
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def estimatedDocConcentration: Vector
Value for docConcentration estimated from data.
Value for docConcentration estimated from data. If Online LDA was used and optimizeDocConcentration was set to false, then this returns the fixed (given) value for the docConcentration parameter.
- Annotations
- @Since("2.0.0")
- def explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
- def explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
- final def extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
- final val featuresCol: Param[String]
Param for features column name.
Param for features column name.
- Definition Classes
- HasFeaturesCol
- final def get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
- final def getCheckpointInterval: Int
- Definition Classes
- HasCheckpointInterval
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
- def getDocConcentration: Array[Double]
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final def getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
- def getK: Int
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- def getKeepLastCheckpoint: Boolean
- Definition Classes
- LDAParams
- Annotations
- @Since("2.0.0")
- def getLearningDecay: Double
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- def getLearningOffset: Double
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final def getMaxIter: Int
- Definition Classes
- HasMaxIter
- def getOldDocConcentration: Vector
Get docConcentration used by spark.mllib LDA
Get docConcentration used by spark.mllib LDA
- Attributes
- protected
- Definition Classes
- LDAParams
- def getOldTopicConcentration: Double
Get topicConcentration used by spark.mllib LDA
Get topicConcentration used by spark.mllib LDA
- Attributes
- protected
- Definition Classes
- LDAParams
- def getOptimizeDocConcentration: Boolean
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- def getOptimizer: String
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final def getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
- def getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
- final def getSeed: Long
- Definition Classes
- HasSeed
- def getSubsamplingRate: Double
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- def getTopicConcentration: Double
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- def getTopicDistributionCol: String
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final def hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
- def hasParent: Boolean
Indicates whether this Model has a corresponding parent.
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final def isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- final val k: IntParam
Param for the number of topics (clusters) to infer.
Param for the number of topics (clusters) to infer. Must be > 1. Default: 10.
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final val keepLastCheckpoint: BooleanParam
For EM optimizer only: optimizer = "em".
For EM optimizer only: optimizer = "em".
If using checkpointing, this indicates whether to keep the last checkpoint. If false, then the checkpoint will be deleted. Deleting the checkpoint can cause failures if a data partition is lost, so set this bit with care. Note that checkpoints will be cleaned up via reference counting, regardless.
See
DistributedLDAModel.getCheckpointFiles
for getting remaining checkpoints andDistributedLDAModel.deleteCheckpointFiles
for removing remaining checkpoints.Default: true
- Definition Classes
- LDAParams
- Annotations
- @Since("2.0.0")
- final val learningDecay: DoubleParam
For Online optimizer only: optimizer = "online".
For Online optimizer only: optimizer = "online".
Learning rate, set as an exponential decay rate. This should be between (0.5, 1.0] to guarantee asymptotic convergence. This is called "kappa" in the Online LDA paper (Hoffman et al., 2010). Default: 0.51, based on Hoffman et al.
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final val learningOffset: DoubleParam
For Online optimizer only: optimizer = "online".
For Online optimizer only: optimizer = "online".
A (positive) learning parameter that downweights early iterations. Larger values make early iterations count less. This is called "tau0" in the Online LDA paper (Hoffman et al., 2010) Default: 1024, following Hoffman et al.
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logLikelihood(dataset: Dataset[_]): Double
Calculates a lower bound on the log likelihood of the entire corpus.
Calculates a lower bound on the log likelihood of the entire corpus.
See Equation (16) in the Online LDA paper (Hoffman et al., 2010).
WARNING: If this model is an instance of DistributedLDAModel (produced when optimizer is set to "em"), this involves collecting a large topicsMatrix to the driver. This implementation may be changed in the future.
- dataset
test corpus to use for calculating log likelihood
- returns
variational lower bound on the log likelihood of the entire corpus
- Annotations
- @Since("2.0.0")
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logPerplexity(dataset: Dataset[_]): Double
Calculate an upper bound on perplexity.
Calculate an upper bound on perplexity. (Lower is better.) See Equation (16) in the Online LDA paper (Hoffman et al., 2010).
WARNING: If this model is an instance of DistributedLDAModel (produced when optimizer is set to "em"), this involves collecting a large topicsMatrix to the driver. This implementation may be changed in the future.
- dataset
test corpus to use for calculating perplexity
- returns
Variational upper bound on log perplexity per token.
- Annotations
- @Since("2.0.0")
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final val maxIter: IntParam
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
- HasMaxIter
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final val optimizeDocConcentration: BooleanParam
For Online optimizer only (currently): optimizer = "online".
For Online optimizer only (currently): optimizer = "online".
Indicates whether the docConcentration (Dirichlet parameter for document-topic distribution) will be optimized during training. Setting this to true will make the model more expressive and fit the training data better. Default: false
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final val optimizer: Param[String]
Optimizer or inference algorithm used to estimate the LDA model.
Optimizer or inference algorithm used to estimate the LDA model. Currently supported (case-insensitive):
- "online": Online Variational Bayes (default)
- "em": Expectation-Maximization
For details, see the following papers:
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- lazy val params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
- var parent: Estimator[LDAModel]
The parent estimator that produced this model.
The parent estimator that produced this model.
- Definition Classes
- Model
- Note
For ensembles' component Models, this value can be null.
- def save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
- final val seed: LongParam
Param for random seed.
Param for random seed.
- Definition Classes
- HasSeed
- final def set(paramPair: ParamPair[_]): LDAModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): LDAModel.this.type
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): LDAModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
- final def setDefault(paramPairs: ParamPair[_]*): LDAModel.this.type
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault
. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): LDAModel.this.type
Sets a default value for a param.
- def setFeaturesCol(value: String): LDAModel.this.type
The features for LDA should be a
Vector
representing the word counts in a document.The features for LDA should be a
Vector
representing the word counts in a document. The vector should be of length vocabSize, with counts for each term (word).- Annotations
- @Since("1.6.0")
- def setParent(parent: Estimator[LDAModel]): LDAModel
Sets the parent of this model (Java API).
Sets the parent of this model (Java API).
- Definition Classes
- Model
- def setSeed(value: Long): LDAModel.this.type
- Annotations
- @Since("1.6.0")
- def setTopicDistributionCol(value: String): LDAModel.this.type
- Annotations
- @Since("2.2.0")
- final val subsamplingRate: DoubleParam
For Online optimizer only: optimizer = "online".
For Online optimizer only: optimizer = "online".
Fraction of the corpus to be sampled and used in each iteration of mini-batch gradient descent, in range (0, 1].
Note that this should be adjusted in synch with
LDA.maxIter
so the entire corpus is used. Specifically, set both so that maxIterations * miniBatchFraction greater than or equal to 1.Note: This is the same as the
miniBatchFraction
parameter in org.apache.spark.mllib.clustering.OnlineLDAOptimizer.Default: 0.05, i.e., 5% of total documents.
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final val supportedOptimizers: Array[String]
Supported values for Param optimizer.
Supported values for Param optimizer.
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- final val topicConcentration: DoubleParam
Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics' distributions over terms.
Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics' distributions over terms.
This is the parameter to a symmetric Dirichlet distribution.
Note: The topics' distributions over terms are called "beta" in the original LDA paper by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009.
If not set by the user, then topicConcentration is set automatically. (default = automatic)
Optimizer-specific parameter settings:
- EM
- Value should be greater than 1.0
- default = 0.1 + 1, where 0.1 gives a small amount of smoothing and +1 follows Asuncion et al. (2009), who recommend a +1 adjustment for EM.
- Online
- Value should be greater than or equal to 0
- default = (1.0 / k), following the implementation from here.
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- EM
- final val topicDistributionCol: Param[String]
Output column with estimates of the topic mixture distribution for each document (often called "theta" in the literature).
Output column with estimates of the topic mixture distribution for each document (often called "theta" in the literature). Returns a vector of zeros for an empty document.
This uses a variational approximation following Hoffman et al. (2010), where the approximate distribution is called "gamma." Technically, this method returns this approximation "gamma" for each document.
- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
- def topicsMatrix: Matrix
Inferred topics, where each topic is represented by a distribution over terms.
Inferred topics, where each topic is represented by a distribution over terms. This is a matrix of size vocabSize x k, where each column is a topic. No guarantees are given about the ordering of the topics.
WARNING: If this model is actually a DistributedLDAModel instance produced by the Expectation-Maximization ("em") optimizer, then this method could involve collecting a large amount of data to the driver (on the order of vocabSize x k).
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_]): DataFrame
Transforms the input dataset.
Transforms the input dataset.
WARNING: If this model is an instance of DistributedLDAModel (produced when optimizer is set to "em"), this involves collecting a large topicsMatrix to the driver. This implementation may be changed in the future.
- Definition Classes
- LDAModel → Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
input dataset
- paramMap
additional parameters, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
input dataset
- firstParamPair
the first param pair, overwrite embedded params
- otherParamPairs
other param pairs, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0") @varargs()
- def transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- LDAModel → PipelineStage
- Annotations
- @Since("1.6.0")
- def transformSchema(schema: StructType, logging: Boolean): StructType
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- LDAModel → Identifiable
- Annotations
- @Since("1.6.0")
- def validateAndTransformSchema(schema: StructType): StructType
Validates and transforms the input schema.
Validates and transforms the input schema.
- schema
input schema
- returns
output schema
- Attributes
- protected
- Definition Classes
- LDAParams
- val vocabSize: Int
- Annotations
- @Since("1.6.0")
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def withLogContext(context: HashMap[String, String])(body: => Unit): Unit
- Attributes
- protected
- Definition Classes
- Logging
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from MLWritable
Inherited from LDAParams
Inherited from HasCheckpointInterval
Inherited from HasSeed
Inherited from HasMaxIter
Inherited from HasFeaturesCol
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.