package evaluation
- Alphabetic
- Public
- Protected
Type Members
- class BinaryClassificationEvaluator extends Evaluator with HasRawPredictionCol with HasLabelCol with HasWeightCol with DefaultParamsWritable
Evaluator for binary classification, which expects input columns rawPrediction, label and an optional weight column.
Evaluator for binary classification, which expects input columns rawPrediction, label and an optional weight column. The rawPrediction column can be of type double (binary 0/1 prediction, or probability of label 1) or of type vector (length-2 vector of raw predictions, scores, or label probabilities).
- Annotations
- @Since("1.2.0")
- class ClusteringEvaluator extends Evaluator with HasPredictionCol with HasFeaturesCol with HasWeightCol with DefaultParamsWritable
Evaluator for clustering results.
Evaluator for clustering results. The metric computes the Silhouette measure using the specified distance measure.
The Silhouette is a measure for the validation of the consistency within clusters. It ranges between 1 and -1, where a value close to 1 means that the points in a cluster are close to the other points in the same cluster and far from the points of the other clusters.
- Annotations
- @Since("2.3.0")
- class ClusteringMetrics extends AnyRef
Metrics for clustering, which expects two input columns: prediction and label.
Metrics for clustering, which expects two input columns: prediction and label.
- Annotations
- @Since("3.1.0")
- abstract class Evaluator extends Params
Abstract class for evaluators that compute metrics from predictions.
Abstract class for evaluators that compute metrics from predictions.
- Annotations
- @Since("1.5.0")
- class MulticlassClassificationEvaluator extends Evaluator with HasPredictionCol with HasLabelCol with HasWeightCol with HasProbabilityCol with DefaultParamsWritable
Evaluator for multiclass classification, which expects input columns: prediction, label, weight (optional) and probability (only for logLoss).
Evaluator for multiclass classification, which expects input columns: prediction, label, weight (optional) and probability (only for logLoss).
- Annotations
- @Since("1.5.0")
- class MultilabelClassificationEvaluator extends Evaluator with HasPredictionCol with HasLabelCol with DefaultParamsWritable
:: Experimental :: Evaluator for multi-label classification, which expects two input columns: prediction and label.
:: Experimental :: Evaluator for multi-label classification, which expects two input columns: prediction and label.
- Annotations
- @Since("3.0.0") @Experimental()
- class RankingEvaluator extends Evaluator with HasPredictionCol with HasLabelCol with DefaultParamsWritable
:: Experimental :: Evaluator for ranking, which expects two input columns: prediction and label.
:: Experimental :: Evaluator for ranking, which expects two input columns: prediction and label.
- Annotations
- @Experimental() @Since("3.0.0")
- final class RegressionEvaluator extends Evaluator with HasPredictionCol with HasLabelCol with HasWeightCol with DefaultParamsWritable
Evaluator for regression, which expects input columns prediction, label and an optional weight column.
Evaluator for regression, which expects input columns prediction, label and an optional weight column.
- Annotations
- @Since("1.4.0")
Value Members
- object BinaryClassificationEvaluator extends DefaultParamsReadable[BinaryClassificationEvaluator] with Serializable
- Annotations
- @Since("1.6.0")
- object ClusteringEvaluator extends DefaultParamsReadable[ClusteringEvaluator] with Serializable
- Annotations
- @Since("2.3.0")
- object MulticlassClassificationEvaluator extends DefaultParamsReadable[MulticlassClassificationEvaluator] with Serializable
- Annotations
- @Since("1.6.0")
- object MultilabelClassificationEvaluator extends DefaultParamsReadable[MultilabelClassificationEvaluator] with Serializable
- Annotations
- @Since("3.0.0")
- object RankingEvaluator extends DefaultParamsReadable[RankingEvaluator] with Serializable
- Annotations
- @Since("3.0.0")
- object RegressionEvaluator extends DefaultParamsReadable[RegressionEvaluator] with Serializable
- Annotations
- @Since("1.6.0")