class GeneralizedLinearRegressionTrainingSummary extends GeneralizedLinearRegressionSummary with Serializable
Summary of GeneralizedLinearRegression fitting and model.
- Annotations
- @Since("2.0.0")
- Source
- GeneralizedLinearRegression.scala
- Alphabetic
- By Inheritance
- GeneralizedLinearRegressionTrainingSummary
- GeneralizedLinearRegressionSummary
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- lazy val aic: Double
Akaike Information Criterion (AIC) for the fitted model.
Akaike Information Criterion (AIC) for the fitted model.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- lazy val coefficientStandardErrors: Array[Double]
Standard error of estimated coefficients and intercept.
Standard error of estimated coefficients and intercept. This value is only available when the underlying
WeightedLeastSquares
using the "normal" solver.If
GeneralizedLinearRegression.fitIntercept
is set to true, then the last element returned corresponds to the intercept.- Annotations
- @Since("2.0.0")
- lazy val degreesOfFreedom: Long
Degrees of freedom.
Degrees of freedom.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- lazy val deviance: Double
The deviance for the fitted model.
The deviance for the fitted model.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- lazy val dispersion: Double
The dispersion of the fitted model.
The dispersion of the fitted model. It is taken as 1.0 for the "binomial" and "poisson" families, and otherwise estimated by the residual Pearson's Chi-Squared statistic (which is defined as sum of the squares of the Pearson residuals) divided by the residual degrees of freedom.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val model: GeneralizedLinearRegressionModel
Private copy of model to ensure Params are not modified outside this class.
Private copy of model to ensure Params are not modified outside this class. Coefficients is not a deep copy, but that is acceptable.
- Attributes
- protected
- Definition Classes
- GeneralizedLinearRegressionSummary
- Note
predictionCol must be set correctly before the value of model is set, and model must be set before predictions is set!
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- lazy val nullDeviance: Double
The deviance for the null model.
The deviance for the null model.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- lazy val numInstances: Long
Number of instances in DataFrame predictions.
Number of instances in DataFrame predictions.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.2.0")
- val numIterations: Int
- Annotations
- @Since("2.0.0")
- lazy val pValues: Array[Double]
Two-sided p-value of estimated coefficients and intercept.
Two-sided p-value of estimated coefficients and intercept. This value is only available when the underlying
WeightedLeastSquares
using the "normal" solver.If
GeneralizedLinearRegression.fitIntercept
is set to true, then the last element returned corresponds to the intercept.- Annotations
- @Since("2.0.0")
- val predictionCol: String
Field in "predictions" which gives the predicted value of each instance.
Field in "predictions" which gives the predicted value of each instance. This is set to a new column name if the original model's
predictionCol
is not set.- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- val predictions: DataFrame
Predictions output by the model's
transform
method.Predictions output by the model's
transform
method.- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- lazy val rank: Long
The numeric rank of the fitted linear model.
The numeric rank of the fitted linear model.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- lazy val residualDegreeOfFreedom: Long
The residual degrees of freedom.
The residual degrees of freedom.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- lazy val residualDegreeOfFreedomNull: Long
The residual degrees of freedom for the null model.
The residual degrees of freedom for the null model.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- def residuals(residualsType: String): DataFrame
Get the residuals of the fitted model by type.
Get the residuals of the fitted model by type.
- residualsType
The type of residuals which should be returned. Supported options: deviance, pearson, working and response.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- def residuals(): DataFrame
Get the default residuals (deviance residuals) of the fitted model.
Get the default residuals (deviance residuals) of the fitted model.
- Definition Classes
- GeneralizedLinearRegressionSummary
- Annotations
- @Since("2.0.0")
- val solver: String
- Annotations
- @Since("2.0.0")
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- lazy val tValues: Array[Double]
T-statistic of estimated coefficients and intercept.
T-statistic of estimated coefficients and intercept. This value is only available when the underlying
WeightedLeastSquares
using the "normal" solver.If
GeneralizedLinearRegression.fitIntercept
is set to true, then the last element returned corresponds to the intercept.- Annotations
- @Since("2.0.0")
- def toString(): String
- Definition Classes
- GeneralizedLinearRegressionTrainingSummary → AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)