object SparseMatrix extends Serializable
Factory methods for org.apache.spark.mllib.linalg.SparseMatrix.
- Annotations
- @Since("1.3.0")
- Source
- Matrices.scala
- Alphabetic
- By Inheritance
- SparseMatrix
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def fromCOO(numRows: Int, numCols: Int, entries: Iterable[(Int, Int, Double)]): SparseMatrix
Generate a
SparseMatrix
from Coordinate List (COO) format.Generate a
SparseMatrix
from Coordinate List (COO) format. Input must be an array of (i, j, value) tuples. Entries that have duplicate values of i and j are added together. Tuples where value is equal to zero will be omitted.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- entries
Array of (i, j, value) tuples
- returns
The corresponding
SparseMatrix
- Annotations
- @Since("1.3.0")
- def fromML(m: ml.linalg.SparseMatrix): SparseMatrix
Convert new linalg type to spark.mllib type.
Convert new linalg type to spark.mllib type. Light copy; only copies references
- Annotations
- @Since("2.0.0")
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- def spdiag(vector: Vector): SparseMatrix
Generate a diagonal matrix in
SparseMatrix
format from the supplied values.Generate a diagonal matrix in
SparseMatrix
format from the supplied values.- vector
a
Vector
that will form the values on the diagonal of the matrix- returns
Square
SparseMatrix
with sizevalues.length
xvalues.length
and non-zerovalues
on the diagonal
- Annotations
- @Since("1.3.0")
- def speye(n: Int): SparseMatrix
Generate an Identity Matrix in
SparseMatrix
format.Generate an Identity Matrix in
SparseMatrix
format.- n
number of rows and columns of the matrix
- returns
SparseMatrix
with sizen
xn
and values of ones on the diagonal
- Annotations
- @Since("1.3.0")
- def sprand(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix
Generate a
SparseMatrix
consisting ofi.i.d
.Generate a
SparseMatrix
consisting ofi.i.d
. uniform random numbers. The number of non-zero elements equal the ceiling ofnumRows
xnumCols
xdensity
- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- density
the desired density for the matrix
- rng
a random number generator
- returns
SparseMatrix
with sizenumRows
xnumCols
and values in U(0, 1)
- Annotations
- @Since("1.3.0")
- def sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix
Generate a
SparseMatrix
consisting ofi.i.d
.Generate a
SparseMatrix
consisting ofi.i.d
. gaussian random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- density
the desired density for the matrix
- rng
a random number generator
- returns
SparseMatrix
with sizenumRows
xnumCols
and values in N(0, 1)
- Annotations
- @Since("1.3.0")
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)