object RandomRDDs
Generator methods for creating RDDs comprised of i.i.d.
samples from some distribution.
- Annotations
- @Since("1.1.0")
- Source
- RandomRDDs.scala
- Alphabetic
- By Inheritance
- RandomRDDs
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDD
RandomRDDs.exponentialJavaRDD
with the default number of partitions and the default seed.RandomRDDs.exponentialJavaRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
- def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDD
RandomRDDs.exponentialJavaRDD
with the default seed.RandomRDDs.exponentialJavaRDD
with the default seed.- Annotations
- @Since("1.3.0")
- def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
Java-friendly version of
RandomRDDs.exponentialRDD
.Java-friendly version of
RandomRDDs.exponentialRDD
.- Annotations
- @Since("1.3.0")
- def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]
RandomRDDs.exponentialJavaVectorRDD
with the default number of partitions and the default seed.RandomRDDs.exponentialJavaVectorRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
- def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
RandomRDDs.exponentialJavaVectorRDD
with the default seed.RandomRDDs.exponentialJavaVectorRDD
with the default seed.- Annotations
- @Since("1.3.0")
- def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
Java-friendly version of
RandomRDDs.exponentialVectorRDD
.Java-friendly version of
RandomRDDs.exponentialVectorRDD
.- Annotations
- @Since("1.3.0")
- def exponentialRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
Generates an RDD comprised of
i.i.d.
samples from the exponential distribution with the input mean.Generates an RDD comprised of
i.i.d.
samples from the exponential distribution with the input mean.- sc
SparkContext used to create the RDD.
- mean
Mean, or 1 / lambda, for the exponential distribution.
- size
Size of the RDD.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Double] comprised of
i.i.d.
samples ~ Pois(mean).
- Annotations
- @Since("1.3.0")
- def exponentialVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the exponential distribution with the input mean.Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the exponential distribution with the input mean.- sc
SparkContext used to create the RDD.
- mean
Mean, or 1 / lambda, for the Exponential distribution.
- numRows
Number of Vectors in the RDD.
- numCols
Number of elements in each Vector.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
)- seed
Random seed (default: a random long integer).
- returns
RDD[Vector] with vectors containing
i.i.d.
samples ~ Exp(mean).
- Annotations
- @Since("1.3.0")
- def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long): JavaDoubleRDD
RandomRDDs.gammaJavaRDD
with the default number of partitions and the default seed.RandomRDDs.gammaJavaRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
- def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int): JavaDoubleRDD
RandomRDDs.gammaJavaRDD
with the default seed.RandomRDDs.gammaJavaRDD
with the default seed.- Annotations
- @Since("1.3.0")
- def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
Java-friendly version of
RandomRDDs.gammaRDD
.Java-friendly version of
RandomRDDs.gammaRDD
.- Annotations
- @Since("1.3.0")
- def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int): JavaRDD[Vector]
RandomRDDs.gammaJavaVectorRDD
with the default number of partitions and the default seed.RandomRDDs.gammaJavaVectorRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
- def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
RandomRDDs.gammaJavaVectorRDD
with the default seed.RandomRDDs.gammaJavaVectorRDD
with the default seed.- Annotations
- @Since("1.3.0")
- def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
Java-friendly version of
RandomRDDs.gammaVectorRDD
.Java-friendly version of
RandomRDDs.gammaVectorRDD
.- Annotations
- @Since("1.3.0")
- def gammaRDD(sc: SparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
Generates an RDD comprised of
i.i.d.
samples from the gamma distribution with the input shape and scale.Generates an RDD comprised of
i.i.d.
samples from the gamma distribution with the input shape and scale.- sc
SparkContext used to create the RDD.
- shape
shape parameter (greater than 0) for the gamma distribution
- scale
scale parameter (greater than 0) for the gamma distribution
- size
Size of the RDD.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Double] comprised of
i.i.d.
samples ~ Pois(mean).
- Annotations
- @Since("1.3.0")
- def gammaVectorRDD(sc: SparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the gamma distribution with the input shape and scale.Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the gamma distribution with the input shape and scale.- sc
SparkContext used to create the RDD.
- shape
shape parameter (greater than 0) for the gamma distribution.
- scale
scale parameter (greater than 0) for the gamma distribution.
- numRows
Number of Vectors in the RDD.
- numCols
Number of elements in each Vector.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
)- seed
Random seed (default: a random long integer).
- returns
RDD[Vector] with vectors containing
i.i.d.
samples ~ Exp(mean).
- Annotations
- @Since("1.3.0")
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long): JavaDoubleRDD
RandomRDDs.logNormalJavaRDD
with the default number of partitions and the default seed.RandomRDDs.logNormalJavaRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
- def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long, numPartitions: Int): JavaDoubleRDD
RandomRDDs.logNormalJavaRDD
with the default seed.RandomRDDs.logNormalJavaRDD
with the default seed.- Annotations
- @Since("1.3.0")
- def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
Java-friendly version of
RandomRDDs.logNormalRDD
.Java-friendly version of
RandomRDDs.logNormalRDD
.- Annotations
- @Since("1.3.0")
- def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int): JavaRDD[Vector]
RandomRDDs.logNormalJavaVectorRDD
with the default number of partitions and the default seed.RandomRDDs.logNormalJavaVectorRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
- def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
RandomRDDs.logNormalJavaVectorRDD
with the default seed.RandomRDDs.logNormalJavaVectorRDD
with the default seed.- Annotations
- @Since("1.3.0")
- def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
Java-friendly version of
RandomRDDs.logNormalVectorRDD
.Java-friendly version of
RandomRDDs.logNormalVectorRDD
.- Annotations
- @Since("1.3.0")
- def logNormalRDD(sc: SparkContext, mean: Double, std: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
Generates an RDD comprised of
i.i.d.
samples from the log normal distribution with the input mean and standard deviationGenerates an RDD comprised of
i.i.d.
samples from the log normal distribution with the input mean and standard deviation- sc
SparkContext used to create the RDD.
- mean
mean for the log normal distribution
- std
standard deviation for the log normal distribution
- size
Size of the RDD.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Double] comprised of
i.i.d.
samples ~ Pois(mean).
- Annotations
- @Since("1.3.0")
- def logNormalVectorRDD(sc: SparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from a log normal distribution.Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from a log normal distribution.- sc
SparkContext used to create the RDD.
- mean
Mean of the log normal distribution.
- std
Standard deviation of the log normal distribution.
- numRows
Number of Vectors in the RDD.
- numCols
Number of elements in each Vector.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Vector] with vectors containing
i.i.d.
samples.
- Annotations
- @Since("1.3.0")
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def normalJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDD
RandomRDDs.normalJavaRDD
with the default number of partitions and the default seed.RandomRDDs.normalJavaRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
- def normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDD
RandomRDDs.normalJavaRDD
with the default seed.RandomRDDs.normalJavaRDD
with the default seed.- Annotations
- @Since("1.1.0")
- def normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
Java-friendly version of
RandomRDDs.normalRDD
.Java-friendly version of
RandomRDDs.normalRDD
.- Annotations
- @Since("1.1.0")
- def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]
RandomRDDs.normalJavaVectorRDD
with the default number of partitions and the default seed.RandomRDDs.normalJavaVectorRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
- def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
RandomRDDs.normalJavaVectorRDD
with the default seed.RandomRDDs.normalJavaVectorRDD
with the default seed.- Annotations
- @Since("1.1.0")
- def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
Java-friendly version of
RandomRDDs.normalVectorRDD
.Java-friendly version of
RandomRDDs.normalVectorRDD
.- Annotations
- @Since("1.1.0")
- def normalRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
Generates an RDD comprised of
i.i.d.
samples from the standard normal distribution.Generates an RDD comprised of
i.i.d.
samples from the standard normal distribution.To transform the distribution in the generated RDD from standard normal to some other normal
N(mean, sigma2)
, useRandomRDDs.normalRDD(sc, n, p, seed).map(v => mean + sigma * v)
.- sc
SparkContext used to create the RDD.
- size
Size of the RDD.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Double] comprised of
i.i.d.
samples ~ N(0.0, 1.0).
- Annotations
- @Since("1.1.0")
- def normalVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the standard normal distribution.Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the standard normal distribution.- sc
SparkContext used to create the RDD.
- numRows
Number of Vectors in the RDD.
- numCols
Number of elements in each Vector.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Vector] with vectors containing
i.i.d.
samples ~N(0.0, 1.0)
.
- Annotations
- @Since("1.1.0")
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDD
RandomRDDs.poissonJavaRDD
with the default number of partitions and the default seed.RandomRDDs.poissonJavaRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
- def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDD
RandomRDDs.poissonJavaRDD
with the default seed.RandomRDDs.poissonJavaRDD
with the default seed.- Annotations
- @Since("1.1.0")
- def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
Java-friendly version of
RandomRDDs.poissonRDD
.Java-friendly version of
RandomRDDs.poissonRDD
.- Annotations
- @Since("1.1.0")
- def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]
RandomRDDs.poissonJavaVectorRDD
with the default number of partitions and the default seed.RandomRDDs.poissonJavaVectorRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
- def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
RandomRDDs.poissonJavaVectorRDD
with the default seed.RandomRDDs.poissonJavaVectorRDD
with the default seed.- Annotations
- @Since("1.1.0")
- def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
Java-friendly version of
RandomRDDs.poissonVectorRDD
.Java-friendly version of
RandomRDDs.poissonVectorRDD
.- Annotations
- @Since("1.1.0")
- def poissonRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
Generates an RDD comprised of
i.i.d.
samples from the Poisson distribution with the input mean.Generates an RDD comprised of
i.i.d.
samples from the Poisson distribution with the input mean.- sc
SparkContext used to create the RDD.
- mean
Mean, or lambda, for the Poisson distribution.
- size
Size of the RDD.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Double] comprised of
i.i.d.
samples ~ Pois(mean).
- Annotations
- @Since("1.1.0")
- def poissonVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the Poisson distribution with the input mean.Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the Poisson distribution with the input mean.- sc
SparkContext used to create the RDD.
- mean
Mean, or lambda, for the Poisson distribution.
- numRows
Number of Vectors in the RDD.
- numCols
Number of elements in each Vector.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
)- seed
Random seed (default: a random long integer).
- returns
RDD[Vector] with vectors containing
i.i.d.
samples ~ Pois(mean).
- Annotations
- @Since("1.1.0")
- def randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long): JavaRDD[T]
RandomRDDs.randomJavaRDD
with the default seed & numPartitionsRandomRDDs.randomJavaRDD
with the default seed & numPartitions- Annotations
- @Since("1.6.0")
- def randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int): JavaRDD[T]
RandomRDDs.randomJavaRDD
with the default seed.RandomRDDs.randomJavaRDD
with the default seed.- Annotations
- @Since("1.6.0")
- def randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int, seed: Long): JavaRDD[T]
Generates an RDD comprised of
i.i.d.
samples produced by the input RandomDataGenerator.Generates an RDD comprised of
i.i.d.
samples produced by the input RandomDataGenerator.- jsc
JavaSparkContext used to create the RDD.
- generator
RandomDataGenerator used to populate the RDD.
- size
Size of the RDD.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[T] comprised of
i.i.d.
samples produced by generator.
- Annotations
- @Since("1.6.0")
- def randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int): JavaRDD[Vector]
RandomRDDs.randomJavaVectorRDD
with the default number of partitions and the default seed.RandomRDDs.randomJavaVectorRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.6.0")
- def randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
::
RandomRDDs.randomJavaVectorRDD
with the default seed.::
RandomRDDs.randomJavaVectorRDD
with the default seed.- Annotations
- @Since("1.6.0")
- def randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
Java-friendly version of
RandomRDDs.randomVectorRDD
.Java-friendly version of
RandomRDDs.randomVectorRDD
.- Annotations
- @Since("1.6.0")
- def randomRDD[T](sc: SparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong())(implicit arg0: ClassTag[T]): RDD[T]
Generates an RDD comprised of
i.i.d.
samples produced by the input RandomDataGenerator.Generates an RDD comprised of
i.i.d.
samples produced by the input RandomDataGenerator.- sc
SparkContext used to create the RDD.
- generator
RandomDataGenerator used to populate the RDD.
- size
Size of the RDD.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[T] comprised of
i.i.d.
samples produced by generator.
- Annotations
- @Since("1.1.0")
- def randomVectorRDD(sc: SparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
Generates an RDD[Vector] with vectors containing
i.i.d.
samples produced by the input RandomDataGenerator.Generates an RDD[Vector] with vectors containing
i.i.d.
samples produced by the input RandomDataGenerator.- sc
SparkContext used to create the RDD.
- generator
RandomDataGenerator used to populate the RDD.
- numRows
Number of Vectors in the RDD.
- numCols
Number of elements in each Vector.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Vector] with vectors containing
i.i.d.
samples produced by generator.
- Annotations
- @Since("1.1.0")
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def uniformJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDD
RandomRDDs.uniformJavaRDD
with the default number of partitions and the default seed.RandomRDDs.uniformJavaRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
- def uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDD
RandomRDDs.uniformJavaRDD
with the default seed.RandomRDDs.uniformJavaRDD
with the default seed.- Annotations
- @Since("1.1.0")
- def uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD
Java-friendly version of
RandomRDDs.uniformRDD
.Java-friendly version of
RandomRDDs.uniformRDD
.- Annotations
- @Since("1.1.0")
- def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]
RandomRDDs.uniformJavaVectorRDD
with the default number of partitions and the default seed.RandomRDDs.uniformJavaVectorRDD
with the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
- def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]
RandomRDDs.uniformJavaVectorRDD
with the default seed.RandomRDDs.uniformJavaVectorRDD
with the default seed.- Annotations
- @Since("1.1.0")
- def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]
Java-friendly version of
RandomRDDs.uniformVectorRDD
.Java-friendly version of
RandomRDDs.uniformVectorRDD
.- Annotations
- @Since("1.1.0")
- def uniformRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]
Generates an RDD comprised of
i.i.d.
samples from the uniform distributionU(0.0, 1.0)
.Generates an RDD comprised of
i.i.d.
samples from the uniform distributionU(0.0, 1.0)
.To transform the distribution in the generated RDD from
U(0.0, 1.0)
toU(a, b)
, useRandomRDDs.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v)
.- sc
SparkContext used to create the RDD.
- size
Size of the RDD.
- numPartitions
Number of partitions in the RDD (default:
sc.defaultParallelism
).- seed
Random seed (default: a random long integer).
- returns
RDD[Double] comprised of
i.i.d.
samples ~U(0.0, 1.0)
.
- Annotations
- @Since("1.1.0")
- def uniformVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]
Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the uniform distribution onU(0.0, 1.0)
.Generates an RDD[Vector] with vectors containing
i.i.d.
samples drawn from the uniform distribution onU(0.0, 1.0)
.- sc
SparkContext used to create the RDD.
- numRows
Number of Vectors in the RDD.
- numCols
Number of elements in each Vector.
- numPartitions
Number of partitions in the RDD.
- seed
Seed for the RNG that generates the seed for the generator in each partition.
- returns
RDD[Vector] with vectors containing i.i.d samples ~
U(0.0, 1.0)
.
- Annotations
- @Since("1.1.0")
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)