Package org.apache.spark.ml
Class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>>
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<M>
org.apache.spark.ml.Predictor<FeaturesType,Learner,M>
- Type Parameters:
FeaturesType- Type of features. E.g.,VectorUDTfor vector features.Learner- Specialization of this class. If you subclass this type, use this type parameter to specify the concrete type.M- Specialization ofPredictionModel. If you subclass this type, use this type parameter to specify the concrete type for the corresponding model.
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,Params,HasFeaturesCol,HasLabelCol,HasPredictionCol,PredictorParams,Identifiable
- Direct Known Subclasses:
Classifier,Regressor
public abstract class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>>
extends Estimator<M>
implements PredictorParams
Abstraction for prediction problems (regression and classification). It accepts all NumericType
labels and will automatically cast it to DoubleType in
fit(). If this predictor supports
weights, it accepts all NumericType weights, which will be automatically casted to DoubleType
in fit().
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionabstract LearnerCreates a copy of this instance with the same UID and some extra params.Param for features column name.Fits a model to the input data.labelCol()Param for label column name.Param for prediction column name.setFeaturesCol(String value) setLabelCol(String value) setPredictionCol(String value) transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.Methods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionColMethods inherited from interface org.apache.spark.ml.util.Identifiable
toString, uidMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.PredictorParams
validateAndTransformSchema
-
Constructor Details
-
Predictor
public Predictor()
-
-
Method Details
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classEstimator<M extends PredictionModel<FeaturesType,M>> - Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
featuresCol
Description copied from interface:HasFeaturesColParam for features column name.- Specified by:
featuresColin interfaceHasFeaturesCol- Returns:
- (undocumented)
-
fit
Description copied from class:EstimatorFits a model to the input data.- Specified by:
fitin classEstimator<M extends PredictionModel<FeaturesType,M>> - Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
labelCol
Description copied from interface:HasLabelColParam for label column name.- Specified by:
labelColin interfaceHasLabelCol- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionColParam for prediction column name.- Specified by:
predictionColin interfaceHasPredictionCol- Returns:
- (undocumented)
-
setFeaturesCol
-
setLabelCol
-
setPredictionCol
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-