Class FMClassificationModel
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<M>
org.apache.spark.ml.PredictionModel<FeaturesType,M>
org.apache.spark.ml.classification.ClassificationModel<FeaturesType,M>
org.apache.spark.ml.classification.ProbabilisticClassificationModel<Vector,FMClassificationModel>
org.apache.spark.ml.classification.FMClassificationModel
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,ClassifierParams,FMClassifierParams,ProbabilisticClassifierParams,Params,HasFeaturesCol,HasFitIntercept,HasLabelCol,HasMaxIter,HasPredictionCol,HasProbabilityCol,HasRawPredictionCol,HasRegParam,HasSeed,HasSolver,HasStepSize,HasThresholds,HasTol,HasWeightCol,PredictorParams,FactorizationMachinesParams,HasTrainingSummary<FMClassificationTrainingSummary>,Identifiable,MLWritable
public class FMClassificationModel
extends ProbabilisticClassificationModel<Vector,FMClassificationModel>
implements FMClassifierParams, MLWritable, HasTrainingSummary<FMClassificationTrainingSummary>
Model produced by
FMClassifier- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Evaluates the model on a test dataset.factors()final IntParamParam for dimensionality of the factors (>= 0)final BooleanParamParam for whether to fit an intercept term.final BooleanParamParam for whether to fit linear term (aka 1-way term)final DoubleParaminitStd()Param for standard deviation of initial coefficientsdoublelinear()static FMClassificationModelfinal IntParammaxIter()Param for maximum number of iterations (>= 0).final DoubleParamParam for mini-batch fraction, must be in range (0, 1]intNumber of classes (values which the label can take).intReturns the number of features the model was trained on.predictRaw(Vector features) Raw prediction for each possible label.static MLReader<FMClassificationModel>read()final DoubleParamregParam()Param for regularization parameter (>= 0).final LongParamseed()Param for random seed.solver()The solver algorithm for optimization.stepSize()Param for Step size to be used for each iteration of optimization (> 0).summary()Gets summary of model on training set.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).toString()uid()An immutable unique ID for the object and its derivatives.Param for weight column name.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.classification.ProbabilisticClassificationModel
normalizeToProbabilitiesInPlace, predictProbability, probabilityCol, setProbabilityCol, setThresholds, thresholds, transform, transformSchemaMethods inherited from class org.apache.spark.ml.classification.ClassificationModel
predict, rawPredictionCol, setRawPredictionCol, transformImplMethods inherited from class org.apache.spark.ml.PredictionModel
featuresCol, labelCol, predictionCol, setFeaturesCol, setPredictionColMethods inherited from class org.apache.spark.ml.Transformer
transform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.regression.FactorizationMachinesParams
getFactorSize, getFitLinear, getInitStd, getMiniBatchFractionMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
featuresCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasFitIntercept
getFitInterceptMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasProbabilityCol
getProbabilityCol, probabilityColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionCol
getRawPredictionCol, rawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRegParam
getRegParamMethods inherited from interface org.apache.spark.ml.param.shared.HasStepSize
getStepSizeMethods inherited from interface org.apache.spark.ml.param.shared.HasThresholds
getThresholds, thresholdsMethods inherited from interface org.apache.spark.ml.util.HasTrainingSummary
hasSummary, setSummaryMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightColMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.classification.ProbabilisticClassifierParams
validateAndTransformSchema
-
Method Details
-
read
-
load
-
factorSize
Description copied from interface:FactorizationMachinesParamsParam for dimensionality of the factors (>= 0)- Specified by:
factorSizein interfaceFactorizationMachinesParams- Returns:
- (undocumented)
-
fitLinear
Description copied from interface:FactorizationMachinesParamsParam for whether to fit linear term (aka 1-way term)- Specified by:
fitLinearin interfaceFactorizationMachinesParams- Returns:
- (undocumented)
-
miniBatchFraction
Description copied from interface:FactorizationMachinesParamsParam for mini-batch fraction, must be in range (0, 1]- Specified by:
miniBatchFractionin interfaceFactorizationMachinesParams- Returns:
- (undocumented)
-
initStd
Description copied from interface:FactorizationMachinesParamsParam for standard deviation of initial coefficients- Specified by:
initStdin interfaceFactorizationMachinesParams- Returns:
- (undocumented)
-
solver
Description copied from interface:FactorizationMachinesParamsThe solver algorithm for optimization. Supported options: "gd", "adamW". Default: "adamW"- Specified by:
solverin interfaceFactorizationMachinesParams- Specified by:
solverin interfaceHasSolver- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightColin interfaceHasWeightCol- Returns:
- (undocumented)
-
regParam
Description copied from interface:HasRegParamParam for regularization parameter (>= 0).- Specified by:
regParamin interfaceHasRegParam- Returns:
- (undocumented)
-
fitIntercept
Description copied from interface:HasFitInterceptParam for whether to fit an intercept term.- Specified by:
fitInterceptin interfaceHasFitIntercept- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
tol
Description copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0). -
stepSize
Description copied from interface:HasStepSizeParam for Step size to be used for each iteration of optimization (> 0).- Specified by:
stepSizein interfaceHasStepSize- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
maxIterin interfaceHasMaxIter- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
intercept
public double intercept() -
linear
-
factors
-
numClasses
public int numClasses()Description copied from class:ClassificationModelNumber of classes (values which the label can take).- Specified by:
numClassesin classClassificationModel<Vector,FMClassificationModel>
-
numFeatures
public int numFeatures()Description copied from class:PredictionModelReturns the number of features the model was trained on. If unknown, returns -1- Overrides:
numFeaturesin classPredictionModel<Vector,FMClassificationModel>
-
summary
Gets summary of model on training set. An exception is thrown ifhasSummaryis false.- Specified by:
summaryin interfaceHasTrainingSummary<FMClassificationTrainingSummary>- Returns:
- (undocumented)
-
evaluate
Evaluates the model on a test dataset.- Parameters:
dataset- Test dataset to evaluate model on.- Returns:
- (undocumented)
-
predictRaw
Description copied from class:ClassificationModelRaw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implementtransform()and outputClassificationModel.rawPredictionCol().- Specified by:
predictRawin classClassificationModel<Vector,FMClassificationModel> - Parameters:
features- (undocumented)- Returns:
- vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classModel<FMClassificationModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
writein interfaceMLWritable- Returns:
- (undocumented)
-
toString
- Specified by:
toStringin interfaceIdentifiable- Overrides:
toStringin classObject
-