Class VectorIndexerModel
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,VectorIndexerParams,Params,HasHandleInvalid,HasInputCol,HasOutputCol,Identifiable,MLWritable
VectorIndexer. Transform categorical features to use 0-based indices
instead of their original values.
- Categorical features are mapped to indices.
- Continuous features (columns) are left unchanged.
This also appends metadata to the output column, marking features as Numeric (continuous),
Nominal (categorical), or Binary (either continuous or categorical).
Non-ML metadata is not carried over from the input to the output column.
This maintains vector sparsity.
param: numFeatures Number of features, i.e., length of Vectors which this transforms param: categoryMaps Feature value index. Keys are categorical feature indices (column indices). Values are maps from original features values to 0-based category indices. If a feature is not in this map, it is treated as continuous.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Param for how to handle invalid data (unseen labels or NULL values).inputCol()Param for input column name.Java-friendly version ofcategoryMaps()static VectorIndexerModelThreshold for the number of values a categorical feature can take.intParam for output column name.static MLReader<VectorIndexerModel>read()setInputCol(String value) setOutputCol(String value) toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasHandleInvalid
getHandleInvalidMethods inherited from interface org.apache.spark.ml.param.shared.HasInputCol
getInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputColMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.feature.VectorIndexerParams
getMaxCategories
-
Method Details
-
read
-
load
-
handleInvalid
Description copied from interface:VectorIndexerParamsParam for how to handle invalid data (unseen labels or NULL values). Note: this param only applies to categorical features, not continuous ones. Options are: 'skip': filter out rows with invalid data. 'error': throw an error. 'keep': put invalid data in a special additional bucket, at index of the number of categories of the feature. Default value: "error"- Specified by:
handleInvalidin interfaceHasHandleInvalid- Specified by:
handleInvalidin interfaceVectorIndexerParams- Returns:
- (undocumented)
-
maxCategories
Description copied from interface:VectorIndexerParamsThreshold for the number of values a categorical feature can take. If a feature is found to have > maxCategories values, then it is declared continuous. Must be greater than or equal to 2.(default = 20)
- Specified by:
maxCategoriesin interfaceVectorIndexerParams- Returns:
- (undocumented)
-
outputCol
Description copied from interface:HasOutputColParam for output column name.- Specified by:
outputColin interfaceHasOutputCol- Returns:
- (undocumented)
-
inputCol
Description copied from interface:HasInputColParam for input column name.- Specified by:
inputColin interfaceHasInputCol- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
numFeatures
public int numFeatures() -
categoryMaps
-
javaCategoryMaps
Java-friendly version ofcategoryMaps() -
setInputCol
-
setOutputCol
-
transform
Description copied from class:TransformerTransforms the input dataset.- Specified by:
transformin classTransformer- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classModel<VectorIndexerModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
writein interfaceMLWritable- Returns:
- (undocumented)
-
toString
- Specified by:
toStringin interfaceIdentifiable- Overrides:
toStringin classObject
-