Package org.apache.spark.ml.feature
Class Word2VecModel
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,Word2VecBase,Params,HasInputCol,HasMaxIter,HasOutputCol,HasSeed,HasStepSize,Identifiable,MLWritable
Model fitted by
Word2Vec.- See Also:
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic classstatic classNested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.findSynonyms(String word, int num) Find "num" number of words closest in similarity to the given word, not including the word itself.findSynonyms(Vector vec, int num) Find "num" number of words whose vector representation is most similar to the supplied vector.findSynonymsArray(String word, int num) Find "num" number of words closest in similarity to the given word, not including the word itself.findSynonymsArray(Vector vec, int num) Find "num" number of words whose vector representation is most similar to the supplied vector.inputCol()Param for input column name.static Word2VecModelfinal IntParammaxIter()Param for maximum number of iterations (>= 0).final IntParamSets the maximum length (in words) of each sentence in the input data.final IntParamminCount()The minimum number of times a token must appear to be included in the word2vec model's vocabulary.final IntParamNumber of partitions for sentences of words.Param for output column name.static MLReader<Word2VecModel>read()final LongParamseed()Param for random seed.setInputCol(String value) setOutputCol(String value) stepSize()Param for Step size to be used for each iteration of optimization (> 0).toString()Transform a sentence column to a vector column to represent the whole sentence.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.final IntParamThe dimension of the code that you want to transform from words.final IntParamThe window size (context words from [-window, window]).write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasInputCol
getInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputCol
getOutputColMethods inherited from interface org.apache.spark.ml.param.shared.HasStepSize
getStepSizeMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.feature.Word2VecBase
getMaxSentenceLength, getMinCount, getNumPartitions, getVectorSize, getWindowSize, validateAndTransformSchema
-
Method Details
-
read
-
load
-
vectorSize
Description copied from interface:Word2VecBaseThe dimension of the code that you want to transform from words. Default: 100- Specified by:
vectorSizein interfaceWord2VecBase- Returns:
- (undocumented)
-
windowSize
Description copied from interface:Word2VecBaseThe window size (context words from [-window, window]). Default: 5- Specified by:
windowSizein interfaceWord2VecBase- Returns:
- (undocumented)
-
numPartitions
Description copied from interface:Word2VecBaseNumber of partitions for sentences of words. Default: 1- Specified by:
numPartitionsin interfaceWord2VecBase- Returns:
- (undocumented)
-
minCount
Description copied from interface:Word2VecBaseThe minimum number of times a token must appear to be included in the word2vec model's vocabulary. Default: 5- Specified by:
minCountin interfaceWord2VecBase- Returns:
- (undocumented)
-
maxSentenceLength
Description copied from interface:Word2VecBaseSets the maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks of up tomaxSentenceLengthsize. Default: 1000- Specified by:
maxSentenceLengthin interfaceWord2VecBase- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
stepSize
Description copied from interface:HasStepSizeParam for Step size to be used for each iteration of optimization (> 0).- Specified by:
stepSizein interfaceHasStepSize- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
maxIterin interfaceHasMaxIter- Returns:
- (undocumented)
-
outputCol
Description copied from interface:HasOutputColParam for output column name.- Specified by:
outputColin interfaceHasOutputCol- Returns:
- (undocumented)
-
inputCol
Description copied from interface:HasInputColParam for input column name.- Specified by:
inputColin interfaceHasInputCol- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
getVectors
-
findSynonyms
Find "num" number of words closest in similarity to the given word, not including the word itself.- Parameters:
word- (undocumented)num- (undocumented)- Returns:
- a dataframe with columns "word" and "similarity" of the word and the cosine similarities between the synonyms and the given word.
-
findSynonyms
Find "num" number of words whose vector representation is most similar to the supplied vector. If the supplied vector is the vector representation of a word in the model's vocabulary, that word will be in the results.- Parameters:
vec- (undocumented)num- (undocumented)- Returns:
- a dataframe with columns "word" and "similarity" of the word and the cosine similarities between the synonyms and the given word vector.
-
findSynonymsArray
Find "num" number of words whose vector representation is most similar to the supplied vector. If the supplied vector is the vector representation of a word in the model's vocabulary, that word will be in the results.- Parameters:
vec- (undocumented)num- (undocumented)- Returns:
- an array of the words and the cosine similarities between the synonyms given word vector.
-
findSynonymsArray
Find "num" number of words closest in similarity to the given word, not including the word itself.- Parameters:
word- (undocumented)num- (undocumented)- Returns:
- an array of the words and the cosine similarities between the synonyms given word vector.
-
setInputCol
-
setOutputCol
-
transform
Transform a sentence column to a vector column to represent the whole sentence. The transform is performed by averaging all word vectors it contains.- Specified by:
transformin classTransformer- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classModel<Word2VecModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
writein interfaceMLWritable- Returns:
- (undocumented)
-
toString
- Specified by:
toStringin interfaceIdentifiable- Overrides:
toStringin classObject
-