Package org.apache.spark.ml.fpm
Class FPGrowth
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,FPGrowthParams,Params,HasPredictionCol,DefaultParamsWritable,Identifiable,MLWritable
public class FPGrowth
extends Estimator<FPGrowthModel>
implements FPGrowthParams, DefaultParamsWritable
A parallel FP-growth algorithm to mine frequent itemsets. The algorithm is described in
Li et al., PFP: Parallel FP-Growth for Query
Recommendation. PFP distributes computation in such a way that each worker executes an
independent group of mining tasks. The FP-Growth algorithm is described in
Han et al., Mining frequent patterns without
candidate generation. Note null values in the itemsCol column are ignored during fit().
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.Fits a model to the input data.itemsCol()Items column name.static FPGrowthMinimal confidence for generating Association Rule.Minimal support level of the frequent pattern.Number of partitions (at least 1) used by parallel FP-growth.Param for prediction column name.static MLReader<T>read()setItemsCol(String value) setMinConfidence(double value) setMinSupport(double value) setNumPartitions(int value) setPredictionCol(String value) transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Methods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.fpm.FPGrowthParams
getItemsCol, getMinConfidence, getMinSupport, getNumPartitions, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionColMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
FPGrowth
-
FPGrowth
public FPGrowth()
-
-
Method Details
-
load
-
read
-
itemsCol
Description copied from interface:FPGrowthParamsItems column name. Default: "items"- Specified by:
itemsColin interfaceFPGrowthParams- Returns:
- (undocumented)
-
minSupport
Description copied from interface:FPGrowthParamsMinimal support level of the frequent pattern. [0.0, 1.0]. Any pattern that appears more than (minSupport * size-of-the-dataset) times will be output in the frequent itemsets. Default: 0.3- Specified by:
minSupportin interfaceFPGrowthParams- Returns:
- (undocumented)
-
numPartitions
Description copied from interface:FPGrowthParamsNumber of partitions (at least 1) used by parallel FP-growth. By default the param is not set, and partition number of the input dataset is used.- Specified by:
numPartitionsin interfaceFPGrowthParams- Returns:
- (undocumented)
-
minConfidence
Description copied from interface:FPGrowthParamsMinimal confidence for generating Association Rule. minConfidence will not affect the mining for frequent itemsets, but will affect the association rules generation. Default: 0.8- Specified by:
minConfidencein interfaceFPGrowthParams- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionColParam for prediction column name.- Specified by:
predictionColin interfaceHasPredictionCol- Returns:
- (undocumented)
-
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
setMinSupport
-
setNumPartitions
-
setMinConfidence
-
setItemsCol
-
setPredictionCol
-
fit
Description copied from class:EstimatorFits a model to the input data.- Specified by:
fitin classEstimator<FPGrowthModel>- Parameters:
dataset- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchemain classPipelineStage- Parameters:
schema- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classEstimator<FPGrowthModel>- Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-