Package org.apache.spark.ml
Class PredictionModel<FeaturesType,M extends PredictionModel<FeaturesType,M>>  
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<M>
org.apache.spark.ml.PredictionModel<FeaturesType,M> 
- Type Parameters:
- FeaturesType- Type of features. E.g.,- VectorUDTfor vector features.
- M- Specialization of- PredictionModel. If you subclass this type, use this type parameter to specify the concrete type for the corresponding model.
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- Params,- HasFeaturesCol,- HasLabelCol,- HasPredictionCol,- PredictorParams,- Identifiable
- Direct Known Subclasses:
- ClassificationModel,- RegressionModel
public abstract class PredictionModel<FeaturesType,M extends PredictionModel<FeaturesType,M>>  
extends Model<M>
implements PredictorParams
Abstraction for a model for prediction tasks (regression and classification).
 
- See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionParam for features column name.labelCol()Param for label column name.intReturns the number of features the model was trained on.abstract doublepredict(FeaturesType features) Predict label for the given features.Param for prediction column name.setFeaturesCol(String value) setPredictionCol(String value) Transforms dataset by reading fromfeaturesCol(), callingpredict, and storing the predictions as a new columnpredictionCol().transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.Methods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColgetFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionColMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoString, uidMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copy, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.PredictorParamsvalidateAndTransformSchema
- 
Constructor Details- 
PredictionModelpublic PredictionModel()
 
- 
- 
Method Details- 
featuresColDescription copied from interface:HasFeaturesColParam for features column name.- Specified by:
- featuresColin interface- HasFeaturesCol
- Returns:
- (undocumented)
 
- 
labelColDescription copied from interface:HasLabelColParam for label column name.- Specified by:
- labelColin interface- HasLabelCol
- Returns:
- (undocumented)
 
- 
numFeaturespublic int numFeatures()Returns the number of features the model was trained on. If unknown, returns -1
- 
predictPredict label for the given features. This method is used to implementtransform()and outputpredictionCol().- Parameters:
- features- (undocumented)
- Returns:
- (undocumented)
 
- 
predictionColDescription copied from interface:HasPredictionColParam for prediction column name.- Specified by:
- predictionColin interface- HasPredictionCol
- Returns:
- (undocumented)
 
- 
setFeaturesCol
- 
setPredictionCol
- 
transformTransforms dataset by reading fromfeaturesCol(), callingpredict, and storing the predictions as a new columnpredictionCol().- Specified by:
- transformin class- Transformer
- Parameters:
- dataset- input dataset
- Returns:
- transformed dataset with predictionCol()of typeDouble
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
 
-