Package org.apache.spark.ml.clustering
Class BisectingKMeansModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- BisectingKMeansParams,- Params,- HasDistanceMeasure,- HasFeaturesCol,- HasMaxIter,- HasPredictionCol,- HasSeed,- HasWeightCol,- HasTrainingSummary<BisectingKMeansSummary>,- Identifiable,- MLWritable
public class BisectingKMeansModel
extends Model<BisectingKMeansModel>
implements BisectingKMeansParams, MLWritable, HasTrainingSummary<BisectingKMeansSummary>
Model fitted by BisectingKMeans.
 
 param:  parentModel a model trained by BisectingKMeans.
- See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionVector[]doublecomputeCost(Dataset<?> dataset) Deprecated.This method is deprecated and will be removed in future versions.Creates a copy of this instance with the same UID and some extra params.Param for The distance measure.longParam for features column name.final IntParamk()The desired number of leaf clusters.static BisectingKMeansModelfinal IntParammaxIter()Param for maximum number of iterations (>= 0).final DoubleParamThe minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).intintParam for prediction column name.static MLReader<BisectingKMeansModel>read()final LongParamseed()Param for random seed.setFeaturesCol(String value) setPredictionCol(String value) summary()Gets summary of model on training set.toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Param for weight column name.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.clustering.BisectingKMeansParamsgetK, getMinDivisibleClusterSize, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasDistanceMeasuregetDistanceMeasureMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColgetFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionColMethods inherited from interface org.apache.spark.ml.util.HasTrainingSummaryhasSummary, loadSummary, setSummaryMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightColMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
read
- 
load
- 
kDescription copied from interface:BisectingKMeansParamsThe desired number of leaf clusters. Must be > 1. Default: 4. The actual number could be smaller if there are no divisible leaf clusters.- Specified by:
- kin interface- BisectingKMeansParams
- Returns:
- (undocumented)
 
- 
minDivisibleClusterSizeDescription copied from interface:BisectingKMeansParamsThe minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).- Specified by:
- minDivisibleClusterSizein interface- BisectingKMeansParams
- Returns:
- (undocumented)
 
- 
weightColDescription copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
- weightColin interface- HasWeightCol
- Returns:
- (undocumented)
 
- 
distanceMeasureDescription copied from interface:HasDistanceMeasureParam for The distance measure. Supported options: 'euclidean' and 'cosine'.- Specified by:
- distanceMeasurein interface- HasDistanceMeasure
- Returns:
- (undocumented)
 
- 
predictionColDescription copied from interface:HasPredictionColParam for prediction column name.- Specified by:
- predictionColin interface- HasPredictionCol
- Returns:
- (undocumented)
 
- 
seedDescription copied from interface:HasSeedParam for random seed.
- 
featuresColDescription copied from interface:HasFeaturesColParam for features column name.- Specified by:
- featuresColin interface- HasFeaturesCol
- Returns:
- (undocumented)
 
- 
maxIterDescription copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
- maxIterin interface- HasMaxIter
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
numFeaturespublic int numFeatures()
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<BisectingKMeansModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
setFeaturesCol
- 
setPredictionCol
- 
transformDescription copied from class:TransformerTransforms the input dataset.- Specified by:
- transformin class- Transformer
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
predict
- 
clusterCenters
- 
computeCostDeprecated.This method is deprecated and will be removed in future versions. Use ClusteringEvaluator instead. You can also get the cost on the training dataset in the summary.Computes the sum of squared distances between the input points and their corresponding cluster centers.- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
writeDescription copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
- 
summaryGets summary of model on training set. An exception is thrown ifhasSummaryis false.- Specified by:
- summaryin interface- HasTrainingSummary<BisectingKMeansSummary>
- Returns:
- (undocumented)
 
- 
estimatedSizepublic long estimatedSize()
 
-