Class GaussianMixtureModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- GaussianMixtureParams,- Params,- HasAggregationDepth,- HasFeaturesCol,- HasMaxIter,- HasPredictionCol,- HasProbabilityCol,- HasSeed,- HasTol,- HasWeightCol,- HasTrainingSummary<GaussianMixtureSummary>,- Identifiable,- MLWritable
 param:  weights Weight for each Gaussian distribution in the mixture.
                This is a multinomial probability distribution over the k Gaussians,
                where weights(i) is the weight for Gaussian i, and weights sum to 1.
 param:  gaussians Array of MultivariateGaussian where gaussians(i) represents
                  the Multivariate Gaussian (Normal) Distribution for Gaussian i
- See Also:
- 
Nested Class SummaryNested ClassesNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionfinal IntParamParam for suggested depth for treeAggregate (>= 2).Creates a copy of this instance with the same UID and some extra params.longParam for features column name.Retrieve Gaussian distributions as a DataFrame.final IntParamk()Number of independent Gaussians in the mixture model.static GaussianMixtureModelfinal IntParammaxIter()Param for maximum number of iterations (>= 0).intintParam for prediction column name.predictProbability(Vector features) Param for Column name for predicted class conditional probabilities.static MLReader<GaussianMixtureModel>read()final LongParamseed()Param for random seed.setFeaturesCol(String value) setPredictionCol(String value) setProbabilityCol(String value) summary()Gets summary of model on training set.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Param for weight column name.double[]weights()write()Returns aMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.clustering.GaussianMixtureParamsgetK, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepthgetAggregationDepthMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColgetFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasProbabilityColgetProbabilityColMethods inherited from interface org.apache.spark.ml.util.HasTrainingSummaryhasSummary, setSummaryMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightColMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
read
- 
load
- 
kDescription copied from interface:GaussianMixtureParamsNumber of independent Gaussians in the mixture model. Must be greater than 1. Default: 2.- Specified by:
- kin interface- GaussianMixtureParams
- Returns:
- (undocumented)
 
- 
aggregationDepthDescription copied from interface:HasAggregationDepthParam for suggested depth for treeAggregate (>= 2).- Specified by:
- aggregationDepthin interface- HasAggregationDepth
- Returns:
- (undocumented)
 
- 
tolDescription copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0).
- 
probabilityColDescription copied from interface:HasProbabilityColParam for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.- Specified by:
- probabilityColin interface- HasProbabilityCol
- Returns:
- (undocumented)
 
- 
weightColDescription copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
- weightColin interface- HasWeightCol
- Returns:
- (undocumented)
 
- 
predictionColDescription copied from interface:HasPredictionColParam for prediction column name.- Specified by:
- predictionColin interface- HasPredictionCol
- Returns:
- (undocumented)
 
- 
seedDescription copied from interface:HasSeedParam for random seed.
- 
featuresColDescription copied from interface:HasFeaturesColParam for features column name.- Specified by:
- featuresColin interface- HasFeaturesCol
- Returns:
- (undocumented)
 
- 
maxIterDescription copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
- maxIterin interface- HasMaxIter
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
weightspublic double[] weights()
- 
gaussians
- 
numFeaturespublic int numFeatures()
- 
setFeaturesCol
- 
setPredictionCol
- 
setProbabilityCol
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<GaussianMixtureModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
transformDescription copied from class:TransformerTransforms the input dataset.- Specified by:
- transformin class- Transformer
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
predict
- 
predictProbability
- 
gaussiansDFRetrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. Two columns are defined: mean and cov. Schema:root |-- mean: vector (nullable = true) |-- cov: matrix (nullable = true)- Returns:
- (undocumented)
 
- 
writeReturns aMLWriterinstance for this ML instance.For GaussianMixtureModel, this does NOT currently save the trainingsummary(). An option to savesummary()may be added in the future.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
- 
summaryGets summary of model on training set. An exception is thrown ifhasSummaryis false.- Specified by:
- summaryin interface- HasTrainingSummary<GaussianMixtureSummary>
- Returns:
- (undocumented)
 
- 
estimatedSizepublic long estimatedSize()
 
-