Package org.apache.spark.ml.clustering
Class KMeansModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- KMeansParams,- Params,- HasDistanceMeasure,- HasFeaturesCol,- HasMaxBlockSizeInMB,- HasMaxIter,- HasPredictionCol,- HasSeed,- HasSolver,- HasTol,- HasWeightCol,- GeneralMLWritable,- HasTrainingSummary<KMeansSummary>,- Identifiable,- MLWritable
public class KMeansModel
extends Model<KMeansModel>
implements KMeansParams, GeneralMLWritable, HasTrainingSummary<KMeansSummary>
Model fitted by KMeans.
 
param: parentModel a model trained by spark.mllib.clustering.KMeans.
- See Also:
- 
Nested Class SummaryNested ClassesNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionVector[]Creates a copy of this instance with the same UID and some extra params.Param for The distance measure.longParam for features column name.initMode()Param for the initialization algorithm.final IntParamParam for the number of steps for the k-means|| initialization mode.final IntParamk()The number of clusters to create (k).static KMeansModelfinal DoubleParamParam for Maximum memory in MB for stacking input data into blocks.final IntParammaxIter()Param for maximum number of iterations (>= 0).intintParam for prediction column name.static MLReader<KMeansModel>read()final LongParamseed()Param for random seed.setFeaturesCol(String value) setPredictionCol(String value) solver()Param for the name of optimization method used in KMeans.summary()Gets summary of model on training set.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Param for weight column name.write()Returns aGeneralMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasDistanceMeasuregetDistanceMeasureMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColgetFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMBgetMaxBlockSizeInMBMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionColMethods inherited from interface org.apache.spark.ml.util.HasTrainingSummaryhasSummary, setSummaryMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightColMethods inherited from interface org.apache.spark.ml.clustering.KMeansParamsgetInitMode, getInitSteps, getK, validateAndTransformSchemaMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
read
- 
load
- 
kDescription copied from interface:KMeansParamsThe number of clusters to create (k). Must be > 1. Note that it is possible for fewer than k clusters to be returned, for example, if there are fewer than k distinct points to cluster. Default: 2.- Specified by:
- kin interface- KMeansParams
- Returns:
- (undocumented)
 
- 
initModeDescription copied from interface:KMeansParamsParam for the initialization algorithm. This can be either "random" to choose random points as initial cluster centers, or "k-means||" to use a parallel variant of k-means++ (Bahmani et al., Scalable K-Means++, VLDB 2012). Default: k-means||.- Specified by:
- initModein interface- KMeansParams
- Returns:
- (undocumented)
 
- 
initStepsDescription copied from interface:KMeansParamsParam for the number of steps for the k-means|| initialization mode. This is an advanced setting -- the default of 2 is almost always enough. Must be > 0. Default: 2.- Specified by:
- initStepsin interface- KMeansParams
- Returns:
- (undocumented)
 
- 
solverDescription copied from interface:KMeansParamsParam for the name of optimization method used in KMeans. Supported options: - "auto": Automatically select the solver based on the input schema and sparsity: If input instances are arrays or input vectors are dense, set to "block". Else, set to "row". - "row": input instances are processed row by row, and triangle-inequality is applied to accelerate the training. - "block": input instances are stacked to blocks, and GEMM is applied to compute the distances. Default is "auto".- Specified by:
- solverin interface- HasSolver
- Specified by:
- solverin interface- KMeansParams
- Returns:
- (undocumented)
 
- 
maxBlockSizeInMBDescription copied from interface:HasMaxBlockSizeInMBParam for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..- Specified by:
- maxBlockSizeInMBin interface- HasMaxBlockSizeInMB
- Returns:
- (undocumented)
 
- 
weightColDescription copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
- weightColin interface- HasWeightCol
- Returns:
- (undocumented)
 
- 
distanceMeasureDescription copied from interface:HasDistanceMeasureParam for The distance measure. Supported options: 'euclidean' and 'cosine'.- Specified by:
- distanceMeasurein interface- HasDistanceMeasure
- Returns:
- (undocumented)
 
- 
tolDescription copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0).
- 
predictionColDescription copied from interface:HasPredictionColParam for prediction column name.- Specified by:
- predictionColin interface- HasPredictionCol
- Returns:
- (undocumented)
 
- 
seedDescription copied from interface:HasSeedParam for random seed.
- 
featuresColDescription copied from interface:HasFeaturesColParam for features column name.- Specified by:
- featuresColin interface- HasFeaturesCol
- Returns:
- (undocumented)
 
- 
maxIterDescription copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
- maxIterin interface- HasMaxIter
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
numFeaturespublic int numFeatures()
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<KMeansModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
setFeaturesCol
- 
setPredictionCol
- 
transformDescription copied from class:TransformerTransforms the input dataset.- Specified by:
- transformin class- Transformer
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
predict
- 
clusterCenters
- 
writeReturns aGeneralMLWriterinstance for this ML instance.For KMeansModel, this does NOT currently save the trainingsummary(). An option to savesummary()may be added in the future.- Specified by:
- writein interface- GeneralMLWritable
- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
- 
summaryGets summary of model on training set. An exception is thrown ifhasSummaryis false.- Specified by:
- summaryin interface- HasTrainingSummary<KMeansSummary>
- Returns:
- (undocumented)
 
- 
estimatedSizepublic long estimatedSize()
 
-