Package org.apache.spark.ml.evaluation
Class BinaryClassificationEvaluator
Object
org.apache.spark.ml.evaluation.Evaluator
org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
- All Implemented Interfaces:
- Serializable,- Params,- HasLabelCol,- HasRawPredictionCol,- HasWeightCol,- DefaultParamsWritable,- Identifiable,- MLWritable
public class BinaryClassificationEvaluator
extends Evaluator
implements HasRawPredictionCol, HasLabelCol, HasWeightCol, DefaultParamsWritable
Evaluator for binary classification, which expects input columns rawPrediction, label and
  an optional weight column.
 The rawPrediction column can be of type double (binary 0/1 prediction, or probability of label 1)
 or of type vector (length-2 vector of raw predictions, scores, or label probabilities).
- See Also:
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.doubleEvaluates model output and returns a scalar metric.getMetrics(Dataset<?> dataset) Get a BinaryClassificationMetrics, which can be used to get binary classification metrics such as areaUnderROC and areaUnderPR.intbooleanIndicates whether the metric returned byevaluateshould be maximized (true, default) or minimized (false).labelCol()Param for label column name.param for metric name in evaluation (supports"areaUnderROC"(default),"areaUnderPR")numBins()param for number of bins to down-sample the curves (ROC curve, PR curve) in area computation.Param for raw prediction (a.k.a.static MLReader<T>read()setLabelCol(String value) setMetricName(String value) setNumBins(int value) setRawPredictionCol(String value) setWeightCol(String value) toString()uid()An immutable unique ID for the object and its derivatives.Param for weight column name.Methods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritablewriteMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionColgetRawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightColMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Constructor Details- 
BinaryClassificationEvaluator
- 
BinaryClassificationEvaluatorpublic BinaryClassificationEvaluator()
 
- 
- 
Method Details- 
load
- 
read
- 
weightColDescription copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
- weightColin interface- HasWeightCol
- Returns:
- (undocumented)
 
- 
labelColDescription copied from interface:HasLabelColParam for label column name.- Specified by:
- labelColin interface- HasLabelCol
- Returns:
- (undocumented)
 
- 
rawPredictionColDescription copied from interface:HasRawPredictionColParam for raw prediction (a.k.a. confidence) column name.- Specified by:
- rawPredictionColin interface- HasRawPredictionCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
metricNameparam for metric name in evaluation (supports"areaUnderROC"(default),"areaUnderPR")- Returns:
- (undocumented)
 
- 
getMetricName
- 
setMetricName
- 
numBinsparam for number of bins to down-sample the curves (ROC curve, PR curve) in area computation. If 0, no down-sampling will occur. Default: 1000.- Returns:
- (undocumented)
 
- 
getNumBinspublic int getNumBins()
- 
setNumBins
- 
setRawPredictionCol
- 
setLabelCol
- 
setWeightCol
- 
evaluateDescription copied from class:EvaluatorEvaluates model output and returns a scalar metric. The value ofEvaluator.isLargerBetter()specifies whether larger values are better.
- 
getMetricsGet a BinaryClassificationMetrics, which can be used to get binary classification metrics such as areaUnderROC and areaUnderPR.- Parameters:
- dataset- a dataset that contains labels/observations and predictions.
- Returns:
- BinaryClassificationMetrics
 
- 
isLargerBetterpublic boolean isLargerBetter()Description copied from class:EvaluatorIndicates whether the metric returned byevaluateshould be maximized (true, default) or minimized (false). A given evaluator may support multiple metrics which may be maximized or minimized.- Overrides:
- isLargerBetterin class- Evaluator
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
 
-