Package org.apache.spark.ml.evaluation
Class RegressionEvaluator
Object
org.apache.spark.ml.evaluation.Evaluator
org.apache.spark.ml.evaluation.RegressionEvaluator
- All Implemented Interfaces:
- Serializable,- Params,- HasLabelCol,- HasPredictionCol,- HasWeightCol,- DefaultParamsWritable,- Identifiable,- MLWritable
public final class RegressionEvaluator
extends Evaluator
implements HasPredictionCol, HasLabelCol, HasWeightCol, DefaultParamsWritable
Evaluator for regression, which expects input columns prediction, label and
 an optional weight column.
- See Also:
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.doubleEvaluates model output and returns a scalar metric.getMetrics(Dataset<?> dataset) Get a RegressionMetrics, which can be used to get regression metrics such as rootMeanSquaredError, meanSquaredError, etc.booleanbooleanIndicates whether the metric returned byevaluateshould be maximized (true, default) or minimized (false).labelCol()Param for label column name.static RegressionEvaluatorParam for metric name in evaluation.Param for prediction column name.static MLReader<T>read()setLabelCol(String value) setMetricName(String value) setPredictionCol(String value) setThroughOrigin(boolean value) setWeightCol(String value) param for whether the regression is through the origin.toString()uid()An immutable unique ID for the object and its derivatives.Param for weight column name.Methods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritablewriteMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightColMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Constructor Details- 
RegressionEvaluator
- 
RegressionEvaluatorpublic RegressionEvaluator()
 
- 
- 
Method Details- 
load
- 
read
- 
weightColDescription copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
- weightColin interface- HasWeightCol
- Returns:
- (undocumented)
 
- 
labelColDescription copied from interface:HasLabelColParam for label column name.- Specified by:
- labelColin interface- HasLabelCol
- Returns:
- (undocumented)
 
- 
predictionColDescription copied from interface:HasPredictionColParam for prediction column name.- Specified by:
- predictionColin interface- HasPredictionCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
metricNameParam for metric name in evaluation. Supports: -"rmse"(default): root mean squared error -"mse": mean squared error -"r2": R^2^ metric -"mae": mean absolute error -"var": explained variance- Returns:
- (undocumented)
 
- 
getMetricName
- 
setMetricName
- 
throughOriginparam for whether the regression is through the origin. Default: false.- Returns:
- (undocumented)
 
- 
getThroughOriginpublic boolean getThroughOrigin()
- 
setThroughOrigin
- 
setPredictionCol
- 
setLabelCol
- 
setWeightCol
- 
evaluateDescription copied from class:EvaluatorEvaluates model output and returns a scalar metric. The value ofEvaluator.isLargerBetter()specifies whether larger values are better.
- 
getMetricsGet a RegressionMetrics, which can be used to get regression metrics such as rootMeanSquaredError, meanSquaredError, etc.- Parameters:
- dataset- a dataset that contains labels/observations and predictions.
- Returns:
- RegressionMetrics
 
- 
isLargerBetterpublic boolean isLargerBetter()Description copied from class:EvaluatorIndicates whether the metric returned byevaluateshould be maximized (true, default) or minimized (false). A given evaluator may support multiple metrics which may be maximized or minimized.- Overrides:
- isLargerBetterin class- Evaluator
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
 
-