Package org.apache.spark.ml.feature
Class CountVectorizerModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- CountVectorizerParams,- Params,- HasInputCol,- HasOutputCol,- Identifiable,- MLWritable
public class CountVectorizerModel
extends Model<CountVectorizerModel>
implements CountVectorizerParams, MLWritable
Converts a text document to a sparse vector of token counts.
 param:  vocabulary An Array over terms. Only the terms in the vocabulary will be counted.
- See Also:
- 
Nested Class SummaryNested ClassesNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructorsConstructorDescriptionCountVectorizerModel(String[] vocabulary) CountVectorizerModel(String uid, String[] vocabulary) 
- 
Method SummaryModifier and TypeMethodDescriptionbinary()Binary toggle to control the output vector values.Creates a copy of this instance with the same UID and some extra params.inputCol()Param for input column name.static CountVectorizerModelmaxDF()Specifies the maximum number of different documents a term could appear in to be included in the vocabulary.minDF()Specifies the minimum number of different documents a term must appear in to be included in the vocabulary.minTF()Filter to ignore rare words in a document.Param for output column name.static MLReader<CountVectorizerModel>read()setBinary(boolean value) setInputCol(String value) setMinTF(double value) setOutputCol(String value) toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Max size of the vocabulary.String[]write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.feature.CountVectorizerParamsgetBinary, getMaxDF, getMinDF, getMinTF, getVocabSize, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasInputColgetInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputColgetOutputColMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Constructor Details- 
CountVectorizerModel
- 
CountVectorizerModel
 
- 
- 
Method Details- 
read
- 
load
- 
vocabSizeDescription copied from interface:CountVectorizerParamsMax size of the vocabulary. CountVectorizer will build a vocabulary that only considers the top vocabSize terms ordered by term frequency across the corpus.Default: 2^18^ - Specified by:
- vocabSizein interface- CountVectorizerParams
- Returns:
- (undocumented)
 
- 
minDFDescription copied from interface:CountVectorizerParamsSpecifies the minimum number of different documents a term must appear in to be included in the vocabulary. If this is an integer greater than or equal to 1, this specifies the number of documents the term must appear in; if this is a double in [0,1), then this specifies the fraction of documents.Default: 1.0 - Specified by:
- minDFin interface- CountVectorizerParams
- Returns:
- (undocumented)
 
- 
maxDFDescription copied from interface:CountVectorizerParamsSpecifies the maximum number of different documents a term could appear in to be included in the vocabulary. A term that appears more than the threshold will be ignored. If this is an integer greater than or equal to 1, this specifies the maximum number of documents the term could appear in; if this is a double in [0,1), then this specifies the maximum fraction of documents the term could appear in.Default: (2^63^) - 1 - Specified by:
- maxDFin interface- CountVectorizerParams
- Returns:
- (undocumented)
 
- 
minTFDescription copied from interface:CountVectorizerParamsFilter to ignore rare words in a document. For each document, terms with frequency/count less than the given threshold are ignored. If this is an integer greater than or equal to 1, then this specifies a count (of times the term must appear in the document); if this is a double in [0,1), then this specifies a fraction (out of the document's token count).Note that the parameter is only used in transform of CountVectorizerModeland does not affect fitting.Default: 1.0 - Specified by:
- minTFin interface- CountVectorizerParams
- Returns:
- (undocumented)
 
- 
binaryDescription copied from interface:CountVectorizerParamsBinary toggle to control the output vector values. If True, all nonzero counts (after minTF filter applied) are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. Default: false- Specified by:
- binaryin interface- CountVectorizerParams
- Returns:
- (undocumented)
 
- 
outputColDescription copied from interface:HasOutputColParam for output column name.- Specified by:
- outputColin interface- HasOutputCol
- Returns:
- (undocumented)
 
- 
inputColDescription copied from interface:HasInputColParam for input column name.- Specified by:
- inputColin interface- HasInputCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
vocabulary
- 
setInputCol
- 
setOutputCol
- 
setMinTF
- 
setBinary
- 
transformDescription copied from class:TransformerTransforms the input dataset.- Specified by:
- transformin class- Transformer
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<CountVectorizerModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
writeDescription copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
 
-