Package org.apache.spark.ml.feature
Class HashingTF
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.feature.HashingTF
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- Params,- HasInputCol,- HasNumFeatures,- HasOutputCol,- DefaultParamsWritable,- Identifiable,- MLWritable
public class HashingTF
extends Transformer
implements HasInputCol, HasOutputCol, HasNumFeatures, DefaultParamsWritable
Maps a sequence of terms to their term frequencies using the hashing trick.
 Currently we use Austin Appleby's MurmurHash 3 algorithm (MurmurHash3_x86_32)
 to calculate the hash code value for the term object.
 Since a simple modulo is used to transform the hash function to a column index,
 it is advisable to use a power of two as the numFeatures parameter;
 otherwise the features will not be mapped evenly to the columns.
- See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionbinary()Binary toggle to control term frequency counts.Creates a copy of this instance with the same UID and some extra params.booleanintintReturns the index of the input term.inputCol()Param for input column name.static HashingTFfinal IntParamParam for Number of features.Param for output column name.read()voidSaves this ML instance to the input path, a shortcut ofwrite.save(path).setBinary(boolean value) setInputCol(String value) setNumFeatures(int value) setOutputCol(String value) toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Methods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritablewriteMethods inherited from interface org.apache.spark.ml.param.shared.HasInputColgetInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasNumFeaturesgetNumFeaturesMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputColgetOutputColMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Constructor Details- 
HashingTFpublic HashingTF()
- 
HashingTF
 
- 
- 
Method Details- 
read
- 
load
- 
numFeaturesDescription copied from interface:HasNumFeaturesParam for Number of features. Should be greater than 0.- Specified by:
- numFeaturesin interface- HasNumFeatures
- Returns:
- (undocumented)
 
- 
outputColDescription copied from interface:HasOutputColParam for output column name.- Specified by:
- outputColin interface- HasOutputCol
- Returns:
- (undocumented)
 
- 
inputColDescription copied from interface:HasInputColParam for input column name.- Specified by:
- inputColin interface- HasInputCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
hashFuncVersionpublic int hashFuncVersion()
- 
setInputCol
- 
setOutputCol
- 
binaryBinary toggle to control term frequency counts. If true, all non-zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. (default = false)- Returns:
- (undocumented)
 
- 
setNumFeatures
- 
getBinarypublic boolean getBinary()
- 
setBinary
- 
transformDescription copied from class:TransformerTransforms the input dataset.- Specified by:
- transformin class- Transformer
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
indexOfReturns the index of the input term.- Parameters:
- term- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Transformer
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
- 
saveDescription copied from interface:MLWritableSaves this ML instance to the input path, a shortcut ofwrite.save(path).- Specified by:
- savein interface- MLWritable
- Parameters:
- path- (undocumented)
 
 
-