Class OneHotEncoder
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- OneHotEncoderBase,- Params,- HasHandleInvalid,- HasInputCol,- HasInputCols,- HasOutputCol,- HasOutputCols,- DefaultParamsWritable,- Identifiable,- MLWritable
[0.0, 0.0, 1.0, 0.0].
 The last category is not included by default (configurable via dropLast),
 because it makes the vector entries sum up to one, and hence linearly dependent.
 So an input value of 4.0 maps to [0.0, 0.0, 0.0, 0.0].
 - See Also:
- 
- StringIndexerfor converting categorical values into category indices
- Serialized Form
 
- Note:
- This is different from scikit-learn's OneHotEncoder, which keeps all categories.
 The output vectors are sparse.
 When handleInvalidis configured to 'keep', an extra "category" indicating invalid values is added as last category. So whendropLastis true, invalid values are encoded as all-zeros vector., When encoding multi-column by using inputColsandoutputColsparams, input/output cols come in pairs, specified by the order in the arrays, and each pair is treated independently.
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.final BooleanParamdropLast()Whether to drop the last category in the encoded vector (default: true)Fits a model to the input data.Param for how to handle invalid data during transform().inputCol()Param for input column name.final StringArrayParamParam for input column names.static OneHotEncoderParam for output column name.final StringArrayParamParam for output column names.static MLReader<T>read()setDropLast(boolean value) setHandleInvalid(String value) setInputCol(String value) setInputCols(String[] values) setOutputCol(String value) setOutputCols(String[] values) transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Methods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritablewriteMethods inherited from interface org.apache.spark.ml.param.shared.HasHandleInvalidgetHandleInvalidMethods inherited from interface org.apache.spark.ml.param.shared.HasInputColgetInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasInputColsgetInputColsMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputColgetOutputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputColsgetOutputColsMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoStringMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.feature.OneHotEncoderBasegetDropLast, getInOutCols, validateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Constructor Details- 
OneHotEncoder
- 
OneHotEncoderpublic OneHotEncoder()
 
- 
- 
Method Details- 
load
- 
read
- 
handleInvalidDescription copied from interface:OneHotEncoderBaseParam for how to handle invalid data during transform(). Options are 'keep' (invalid data presented as an extra categorical feature) or 'error' (throw an error). Note that this Param is only used during transform; during fitting, invalid data will result in an error. Default: "error"- Specified by:
- handleInvalidin interface- HasHandleInvalid
- Specified by:
- handleInvalidin interface- OneHotEncoderBase
- Returns:
- (undocumented)
 
- 
dropLastDescription copied from interface:OneHotEncoderBaseWhether to drop the last category in the encoded vector (default: true)- Specified by:
- dropLastin interface- OneHotEncoderBase
- Returns:
- (undocumented)
 
- 
outputColsDescription copied from interface:HasOutputColsParam for output column names.- Specified by:
- outputColsin interface- HasOutputCols
- Returns:
- (undocumented)
 
- 
outputColDescription copied from interface:HasOutputColParam for output column name.- Specified by:
- outputColin interface- HasOutputCol
- Returns:
- (undocumented)
 
- 
inputColsDescription copied from interface:HasInputColsParam for input column names.- Specified by:
- inputColsin interface- HasInputCols
- Returns:
- (undocumented)
 
- 
inputColDescription copied from interface:HasInputColParam for input column name.- Specified by:
- inputColin interface- HasInputCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
setInputCol
- 
setOutputCol
- 
setInputCols
- 
setOutputCols
- 
setDropLast
- 
setHandleInvalid
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
fitDescription copied from class:EstimatorFits a model to the input data.- Specified by:
- fitin class- Estimator<OneHotEncoderModel>
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Estimator<OneHotEncoderModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
 
-