Package org.apache.spark.ml.feature
Class RobustScalerModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- RobustScalerParams,- Params,- HasInputCol,- HasOutputCol,- HasRelativeError,- Identifiable,- MLWritable
public class RobustScalerModel
extends Model<RobustScalerModel>
implements RobustScalerParams, MLWritable
Model fitted by 
RobustScaler.
 param: range quantile range for each original column during fitting param: median median value for each original column during fitting
- See Also:
- 
Nested Class SummaryNested ClassesNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.inputCol()Param for input column name.static RobustScalerModellower()Lower quantile to calculate quantile range, shared by all features Default: 0.25median()Param for output column name.range()static MLReader<RobustScalerModel>read()final DoubleParamParam for the relative target precision for the approximate quantile algorithm.setInputCol(String value) setOutputCol(String value) toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.upper()Upper quantile to calculate quantile range, shared by all features Default: 0.75Whether to center the data with median before scaling.Whether to scale the data to quantile range.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasInputColgetInputColMethods inherited from interface org.apache.spark.ml.param.shared.HasOutputColgetOutputColMethods inherited from interface org.apache.spark.ml.param.shared.HasRelativeErrorgetRelativeErrorMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.feature.RobustScalerParamsgetLower, getUpper, getWithCentering, getWithScaling, validateAndTransformSchema
- 
Method Details- 
read
- 
load
- 
lowerDescription copied from interface:RobustScalerParamsLower quantile to calculate quantile range, shared by all features Default: 0.25- Specified by:
- lowerin interface- RobustScalerParams
- Returns:
- (undocumented)
 
- 
upperDescription copied from interface:RobustScalerParamsUpper quantile to calculate quantile range, shared by all features Default: 0.75- Specified by:
- upperin interface- RobustScalerParams
- Returns:
- (undocumented)
 
- 
withCenteringDescription copied from interface:RobustScalerParamsWhether to center the data with median before scaling. It will build a dense output, so take care when applying to sparse input. Default: false- Specified by:
- withCenteringin interface- RobustScalerParams
- Returns:
- (undocumented)
 
- 
withScalingDescription copied from interface:RobustScalerParamsWhether to scale the data to quantile range. Default: true- Specified by:
- withScalingin interface- RobustScalerParams
- Returns:
- (undocumented)
 
- 
relativeErrorDescription copied from interface:HasRelativeErrorParam for the relative target precision for the approximate quantile algorithm. Must be in the range [0, 1].- Specified by:
- relativeErrorin interface- HasRelativeError
- Returns:
- (undocumented)
 
- 
outputColDescription copied from interface:HasOutputColParam for output column name.- Specified by:
- outputColin interface- HasOutputCol
- Returns:
- (undocumented)
 
- 
inputColDescription copied from interface:HasInputColParam for input column name.- Specified by:
- inputColin interface- HasInputCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
range
- 
median
- 
setInputCol
- 
setOutputCol
- 
transformDescription copied from class:TransformerTransforms the input dataset.- Specified by:
- transformin class- Transformer
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<RobustScalerModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
writeDescription copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
 
-