Package org.apache.spark.ml.regression
Class GeneralizedLinearRegression.Poisson$
Object
org.apache.spark.ml.regression.GeneralizedLinearRegression.Poisson$
- All Implemented Interfaces:
- Serializable
- Enclosing class:
- GeneralizedLinearRegression
Poisson exponential family distribution.
 The default link for the Poisson family is the log link.
- See Also:
- 
Field SummaryFieldsModifier and TypeFieldDescriptionstatic final GeneralizedLinearRegression.Poisson$Static reference to the singleton instance of this Scala object.
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptiondoubleaic(RDD<scala.Tuple3<Object, Object, Object>> predictions, double deviance, double numInstances, double weightSum) Akaike Information Criterion (AIC) value of the family for a given dataset.org.apache.spark.ml.regression.GeneralizedLinearRegression.LinkThe default link instance of this family.doubledeviance(double y, double mu, double weight) Deviance of (y, mu) pair.doubleinitialize(double y, double weight) Initialize the starting value for mu.name()doubleproject(double mu) Trim the fitted value so that it will be in valid range.doublevariance(double mu) The variance of the endogenous variable's mean, given the value mu.double
- 
Field Details- 
MODULE$Static reference to the singleton instance of this Scala object.
 
- 
- 
Constructor Details- 
Poisson$public Poisson$()
 
- 
- 
Method Details- 
name
- 
defaultLinkpublic org.apache.spark.ml.regression.GeneralizedLinearRegression.Link defaultLink()The default link instance of this family.
- 
initializepublic double initialize(double y, double weight) Initialize the starting value for mu.
- 
variancepublic double variance(double mu) The variance of the endogenous variable's mean, given the value mu.
- 
deviancepublic double deviance(double y, double mu, double weight) Deviance of (y, mu) pair.
- 
aicpublic double aic(RDD<scala.Tuple3<Object, Object, Object>> predictions, double deviance, double numInstances, double weightSum) Akaike Information Criterion (AIC) value of the family for a given dataset.- Parameters:
- predictions- an RDD of (y, mu, weight) of instances in evaluation dataset
- deviance- the deviance for the fitted model in evaluation dataset
- numInstances- number of instances in evaluation dataset
- weightSum- weights sum of instances in evaluation dataset
- Returns:
- (undocumented)
 
- 
variancePowerpublic double variancePower()
- 
projectpublic double project(double mu) Trim the fitted value so that it will be in valid range.
 
-