Package org.apache.spark.ml.regression
Interface LinearRegressionParams
- All Superinterfaces:
- HasAggregationDepth,- HasElasticNetParam,- HasFeaturesCol,- HasFitIntercept,- HasLabelCol,- HasLoss,- HasMaxBlockSizeInMB,- HasMaxIter,- HasPredictionCol,- HasRegParam,- HasSolver,- HasStandardization,- HasTol,- HasWeightCol,- Identifiable,- Params,- PredictorParams,- Serializable
- All Known Implementing Classes:
- LinearRegression,- LinearRegressionModel
public interface LinearRegressionParams
extends PredictorParams, HasRegParam, HasElasticNetParam, HasMaxIter, HasTol, HasFitIntercept, HasStandardization, HasWeightCol, HasSolver, HasAggregationDepth, HasLoss, HasMaxBlockSizeInMB
Params for linear regression.
- 
Method SummaryModifier and TypeMethodDescriptionepsilon()The shape parameter to control the amount of robustness.doubleloss()The loss function to be optimized.solver()The solver algorithm for optimization.validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType) Validates and transforms the input schema with the provided param map.Methods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepthaggregationDepth, getAggregationDepthMethods inherited from interface org.apache.spark.ml.param.shared.HasElasticNetParamelasticNetParam, getElasticNetParamMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColfeaturesCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasFitInterceptfitIntercept, getFitInterceptMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMBgetMaxBlockSizeInMB, maxBlockSizeInMBMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIter, maxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRegParamgetRegParam, regParamMethods inherited from interface org.apache.spark.ml.param.shared.HasStandardizationgetStandardization, standardizationMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightCol, weightColMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoString, uidMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copy, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
epsilonDoubleParam epsilon()The shape parameter to control the amount of robustness. Must be > 1.0. At larger values of epsilon, the huber criterion becomes more similar to least squares regression; for small values of epsilon, the criterion is more similar to L1 regression. Default is 1.35 to get as much robustness as possible while retaining 95% statistical efficiency for normally distributed data. It matches sklearn HuberRegressor and is "M" from A robust hybrid of lasso and ridge regression. Only valid when "loss" is "huber".- Returns:
- (undocumented)
 
- 
getEpsilondouble getEpsilon()
- 
lossThe loss function to be optimized. Supported options: "squaredError" and "huber". Default: "squaredError"
- 
solverThe solver algorithm for optimization. Supported options: "l-bfgs", "normal" and "auto". Default: "auto"
- 
validateAndTransformSchemaStructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType) Description copied from interface:PredictorParamsValidates and transforms the input schema with the provided param map.- Specified by:
- validateAndTransformSchemain interface- PredictorParams
- Parameters:
- schema- input schema
- fitting- whether this is in fitting
- featuresDataType- SQL DataType for FeaturesType. E.g.,- VectorUDTfor vector features.
- Returns:
- output schema
 
 
-