Package org.apache.spark.ml.param.shared
Interface HasStandardization
- All Superinterfaces:
- Identifiable,- Params,- Serializable
- All Known Subinterfaces:
- LinearRegressionParams,- LinearSVCParams,- LogisticRegressionParams
- All Known Implementing Classes:
- LinearRegression,- LinearRegressionModel,- LinearSVC,- LinearSVCModel,- LogisticRegression,- LogisticRegressionModel
Trait for shared param standardization (default: true). This trait may be changed or
 removed between minor versions.
- 
Method SummaryModifier and TypeMethodDescriptionbooleanParam for whether to standardize the training features before fitting the model.Methods inherited from interface org.apache.spark.ml.util.IdentifiabletoString, uidMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copy, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
getStandardizationboolean getStandardization()
- 
standardizationBooleanParam standardization()Param for whether to standardize the training features before fitting the model.- Returns:
- (undocumented)
 
 
-