Interface LinearSVCParams
- All Superinterfaces:
- ClassifierParams,- HasAggregationDepth,- HasFeaturesCol,- HasFitIntercept,- HasLabelCol,- HasMaxBlockSizeInMB,- HasMaxIter,- HasPredictionCol,- HasRawPredictionCol,- HasRegParam,- HasStandardization,- HasThreshold,- HasTol,- HasWeightCol,- Identifiable,- Params,- PredictorParams,- Serializable
- All Known Implementing Classes:
- LinearSVC,- LinearSVCModel
public interface LinearSVCParams
extends ClassifierParams, HasRegParam, HasMaxIter, HasFitIntercept, HasTol, HasStandardization, HasWeightCol, HasAggregationDepth, HasThreshold, HasMaxBlockSizeInMB
Params for linear SVM Classifier.
- 
Method SummaryModifier and TypeMethodDescriptionParam for threshold in binary classification prediction.Methods inherited from interface org.apache.spark.ml.classification.ClassifierParamsvalidateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepthaggregationDepth, getAggregationDepthMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColfeaturesCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasFitInterceptfitIntercept, getFitInterceptMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMBgetMaxBlockSizeInMB, maxBlockSizeInMBMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIter, maxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionColgetRawPredictionCol, rawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRegParamgetRegParam, regParamMethods inherited from interface org.apache.spark.ml.param.shared.HasStandardizationgetStandardization, standardizationMethods inherited from interface org.apache.spark.ml.param.shared.HasThresholdgetThresholdMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightCol, weightColMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoString, uidMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copy, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Method Details- 
thresholdDoubleParam threshold()Param for threshold in binary classification prediction. For LinearSVC, this threshold is applied to the rawPrediction, rather than a probability. This threshold can be any real number, where Inf will make all predictions 0.0 and -Inf will make all predictions 1.0. Default: 0.0- Specified by:
- thresholdin interface- HasThreshold
- Returns:
- (undocumented)
 
 
-