Class LinearSVC
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<M>
org.apache.spark.ml.Predictor<FeaturesType,E,M>
  
org.apache.spark.ml.classification.Classifier<Vector,LinearSVC,LinearSVCModel>
  
org.apache.spark.ml.classification.LinearSVC
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- ClassifierParams,- LinearSVCParams,- Params,- HasAggregationDepth,- HasFeaturesCol,- HasFitIntercept,- HasLabelCol,- HasMaxBlockSizeInMB,- HasMaxIter,- HasPredictionCol,- HasRawPredictionCol,- HasRegParam,- HasStandardization,- HasThreshold,- HasTol,- HasWeightCol,- PredictorParams,- DefaultParamsWritable,- Identifiable,- MLWritable
public class LinearSVC
extends Classifier<Vector,LinearSVC,LinearSVCModel>
implements LinearSVCParams, DefaultParamsWritable  
   Linear SVM Classifier
 
This binary classifier optimizes the Hinge Loss using the OWLQN optimizer. Only supports L2 regularization currently.
Since 3.1.0, it supports stacking instances into blocks and using GEMV for better performance. The block size will be 1.0 MB, if param maxBlockSizeInMB is set 0.0 by default.
- See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionfinal IntParamParam for suggested depth for treeAggregate (>= 2).Creates a copy of this instance with the same UID and some extra params.final BooleanParamParam for whether to fit an intercept term.static LinearSVCfinal DoubleParamParam for Maximum memory in MB for stacking input data into blocks.final IntParammaxIter()Param for maximum number of iterations (>= 0).static MLReader<T>read()final DoubleParamregParam()Param for regularization parameter (>= 0).setAggregationDepth(int value) Suggested depth for treeAggregate (greater than or equal to 2).setFitIntercept(boolean value) Whether to fit an intercept term.setMaxBlockSizeInMB(double value) Sets the value of parammaxBlockSizeInMB().setMaxIter(int value) Set the maximum number of iterations.setRegParam(double value) Set the regularization parameter.setStandardization(boolean value) Whether to standardize the training features before fitting the model.setThreshold(double value) Set threshold in binary classification.setTol(double value) Set the convergence tolerance of iterations.setWeightCol(String value) Set the value of paramweightCol().final BooleanParamParam for whether to standardize the training features before fitting the model.final DoubleParamParam for threshold in binary classification prediction.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).uid()An immutable unique ID for the object and its derivatives.Param for weight column name.Methods inherited from class org.apache.spark.ml.classification.ClassifierrawPredictionCol, setRawPredictionColMethods inherited from class org.apache.spark.ml.PredictorfeaturesCol, fit, labelCol, predictionCol, setFeaturesCol, setLabelCol, setPredictionCol, transformSchemaMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.classification.ClassifierParamsvalidateAndTransformSchemaMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritablewriteMethods inherited from interface org.apache.spark.ml.param.shared.HasAggregationDepthgetAggregationDepthMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColfeaturesCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasFitInterceptgetFitInterceptMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxBlockSizeInMBgetMaxBlockSizeInMBMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionColgetRawPredictionCol, rawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasRegParamgetRegParamMethods inherited from interface org.apache.spark.ml.param.shared.HasStandardizationgetStandardizationMethods inherited from interface org.apache.spark.ml.param.shared.HasThresholdgetThresholdMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightColMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoStringMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
- 
Constructor Details- 
LinearSVC
- 
LinearSVCpublic LinearSVC()
 
- 
- 
Method Details- 
load
- 
read
- 
thresholdDescription copied from interface:LinearSVCParamsParam for threshold in binary classification prediction. For LinearSVC, this threshold is applied to the rawPrediction, rather than a probability. This threshold can be any real number, where Inf will make all predictions 0.0 and -Inf will make all predictions 1.0. Default: 0.0- Specified by:
- thresholdin interface- HasThreshold
- Specified by:
- thresholdin interface- LinearSVCParams
- Returns:
- (undocumented)
 
- 
maxBlockSizeInMBDescription copied from interface:HasMaxBlockSizeInMBParam for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..- Specified by:
- maxBlockSizeInMBin interface- HasMaxBlockSizeInMB
- Returns:
- (undocumented)
 
- 
aggregationDepthDescription copied from interface:HasAggregationDepthParam for suggested depth for treeAggregate (>= 2).- Specified by:
- aggregationDepthin interface- HasAggregationDepth
- Returns:
- (undocumented)
 
- 
weightColDescription copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
- weightColin interface- HasWeightCol
- Returns:
- (undocumented)
 
- 
standardizationDescription copied from interface:HasStandardizationParam for whether to standardize the training features before fitting the model.- Specified by:
- standardizationin interface- HasStandardization
- Returns:
- (undocumented)
 
- 
tolDescription copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0).
- 
fitInterceptDescription copied from interface:HasFitInterceptParam for whether to fit an intercept term.- Specified by:
- fitInterceptin interface- HasFitIntercept
- Returns:
- (undocumented)
 
- 
maxIterDescription copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
- maxIterin interface- HasMaxIter
- Returns:
- (undocumented)
 
- 
regParamDescription copied from interface:HasRegParamParam for regularization parameter (>= 0).- Specified by:
- regParamin interface- HasRegParam
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
setRegParamSet the regularization parameter. Default is 0.0.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setMaxIterSet the maximum number of iterations. Default is 100.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setFitInterceptWhether to fit an intercept term. Default is true.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setTolSet the convergence tolerance of iterations. Smaller values will lead to higher accuracy at the cost of more iterations. Default is 1E-6.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setStandardizationWhether to standardize the training features before fitting the model. Default is true.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setWeightColSet the value of paramweightCol(). If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setThresholdSet threshold in binary classification.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setAggregationDepthSuggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setMaxBlockSizeInMBSets the value of parammaxBlockSizeInMB(). Default is 0.0, then 1.0 MB will be chosen.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().
 
-