Package org.apache.spark.ml
Class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>>     
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<M>
org.apache.spark.ml.Predictor<FeaturesType,Learner,M>  
- Type Parameters:
- FeaturesType- Type of features. E.g.,- VectorUDTfor vector features.
- Learner- Specialization of this class. If you subclass this type, use this type parameter to specify the concrete type.
- M- Specialization of- PredictionModel. If you subclass this type, use this type parameter to specify the concrete type for the corresponding model.
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- Params,- HasFeaturesCol,- HasLabelCol,- HasPredictionCol,- PredictorParams,- Identifiable
- Direct Known Subclasses:
- Classifier,- Regressor
public abstract class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>>     
extends Estimator<M>
implements PredictorParams
Abstraction for prediction problems (regression and classification). It accepts all NumericType
 labels and will automatically cast it to DoubleType in 
fit(). If this predictor supports
 weights, it accepts all NumericType weights, which will be automatically casted to DoubleType
 in fit().
 - See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionabstract LearnerCreates a copy of this instance with the same UID and some extra params.Param for features column name.Fits a model to the input data.labelCol()Param for label column name.Param for prediction column name.setFeaturesCol(String value) setLabelCol(String value) setPredictionCol(String value) transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.Methods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColgetFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionColMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoString, uidMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.PredictorParamsvalidateAndTransformSchema
- 
Constructor Details- 
Predictorpublic Predictor()
 
- 
- 
Method Details- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Estimator<M extends PredictionModel<FeaturesType,- M>> 
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
featuresColDescription copied from interface:HasFeaturesColParam for features column name.- Specified by:
- featuresColin interface- HasFeaturesCol
- Returns:
- (undocumented)
 
- 
fitDescription copied from class:EstimatorFits a model to the input data.- Specified by:
- fitin class- Estimator<M extends PredictionModel<FeaturesType,- M>> 
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
labelColDescription copied from interface:HasLabelColParam for label column name.- Specified by:
- labelColin interface- HasLabelCol
- Returns:
- (undocumented)
 
- 
predictionColDescription copied from interface:HasPredictionColParam for prediction column name.- Specified by:
- predictionColin interface- HasPredictionCol
- Returns:
- (undocumented)
 
- 
setFeaturesCol
- 
setLabelCol
- 
setPredictionCol
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
 
-