Package org.apache.spark.ml.tuning
Class TrainValidationSplit
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<TrainValidationSplitModel>
org.apache.spark.ml.tuning.TrainValidationSplit
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- Params,- HasCollectSubModels,- HasParallelism,- HasSeed,- TrainValidationSplitParams,- ValidatorParams,- Identifiable,- MLWritable
public class TrainValidationSplit
extends Estimator<TrainValidationSplitModel>
implements TrainValidationSplitParams, HasParallelism, HasCollectSubModels, MLWritable, org.apache.spark.internal.Logging
Validation for hyper-parameter tuning.
 Randomly splits the input dataset into train and validation sets,
 and uses evaluation metric on the validation set to select the best model.
 Similar to 
CrossValidator, but only splits the set once.- See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionfinal BooleanParamParam for whether to collect a list of sub-models trained during tuning.Creates a copy of this instance with the same UID and some extra params.param for the estimator to be validatedparam for estimator param mapsparam for the evaluator used to select hyper-parameters that maximize the validated metricFits a model to the input data.static TrainValidationSplitThe number of threads to use when running parallel algorithms.static MLReader<TrainValidationSplit>read()final LongParamseed()Param for random seed.setCollectSubModels(boolean value) Whether to collect submodels when fitting.setEstimator(Estimator<?> value) setEstimatorParamMaps(ParamMap[] value) setEvaluator(Evaluator value) setParallelism(int value) Set the maximum level of parallelism to evaluate models in parallel.setSeed(long value) setTrainRatio(double value) Param for ratio between train and validation data.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasCollectSubModelsgetCollectSubModelsMethods inherited from interface org.apache.spark.ml.param.shared.HasParallelismgetExecutionContext, getParallelismMethods inherited from interface org.apache.spark.ml.util.IdentifiabletoStringMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.tuning.TrainValidationSplitParamsgetTrainRatioMethods inherited from interface org.apache.spark.ml.tuning.ValidatorParamsgetEstimator, getEstimatorParamMaps, getEvaluator, logTuningParams, transformSchemaImpl
- 
Constructor Details- 
TrainValidationSplit
- 
TrainValidationSplitpublic TrainValidationSplit()
 
- 
- 
Method Details- 
read
- 
load
- 
collectSubModelsDescription copied from interface:HasCollectSubModelsParam for whether to collect a list of sub-models trained during tuning. If set to false, then only the single best sub-model will be available after fitting. If set to true, then all sub-models will be available. Warning: For large models, collecting all sub-models can cause OOMs on the Spark driver.- Specified by:
- collectSubModelsin interface- HasCollectSubModels
- Returns:
- (undocumented)
 
- 
parallelismDescription copied from interface:HasParallelismThe number of threads to use when running parallel algorithms. Default is 1 for serial execution- Specified by:
- parallelismin interface- HasParallelism
- Returns:
- (undocumented)
 
- 
trainRatioDescription copied from interface:TrainValidationSplitParamsParam for ratio between train and validation data. Must be between 0 and 1. Default: 0.75- Specified by:
- trainRatioin interface- TrainValidationSplitParams
- Returns:
- (undocumented)
 
- 
estimatorDescription copied from interface:ValidatorParamsparam for the estimator to be validated- Specified by:
- estimatorin interface- ValidatorParams
- Returns:
- (undocumented)
 
- 
estimatorParamMapsDescription copied from interface:ValidatorParamsparam for estimator param maps- Specified by:
- estimatorParamMapsin interface- ValidatorParams
- Returns:
- (undocumented)
 
- 
evaluatorDescription copied from interface:ValidatorParamsparam for the evaluator used to select hyper-parameters that maximize the validated metric- Specified by:
- evaluatorin interface- ValidatorParams
- Returns:
- (undocumented)
 
- 
seedDescription copied from interface:HasSeedParam for random seed.
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
setEstimator
- 
setEstimatorParamMaps
- 
setEvaluator
- 
setTrainRatio
- 
setSeed
- 
setParallelismSet the maximum level of parallelism to evaluate models in parallel. Default is 1 for serial evaluation- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
setCollectSubModelsWhether to collect submodels when fitting. If set, we can get submodels from the returned model.Note: If set this param, when you save the returned model, you can set an option "persistSubModels" to be "true" before saving, in order to save these submodels. You can check documents of TrainValidationSplitModel.TrainValidationSplitModelWriterfor more information.- Parameters:
- value- (undocumented)
- Returns:
- (undocumented)
 
- 
fitDescription copied from class:EstimatorFits a model to the input data.- Specified by:
- fitin class- Estimator<TrainValidationSplitModel>
- Parameters:
- dataset- (undocumented)
- Returns:
- (undocumented)
 
- 
transformSchemaDescription copied from class:PipelineStageCheck transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Specified by:
- transformSchemain class- PipelineStage
- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Estimator<TrainValidationSplitModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
writeDescription copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
 
-