Class NaiveBayes
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging
(label, features) pairs.
 This is the Multinomial NB (see here) which can handle all kinds of discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a 0-1 vector, it can also be used as Bernoulli NB (see here). The input feature values must be nonnegative.
- See Also:
- 
Nested Class SummaryNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptiondoubleGet the smoothing parameter.Get the model type.run(RDD<LabeledPoint> data) Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.setLambda(double lambda) Set the smoothing parameter.setModelType(String modelType) Set the model type using a string (case-sensitive).static NaiveBayesModeltrain(RDD<LabeledPoint> input) Trains a Naive Bayes model given an RDD of(label, features)pairs.static NaiveBayesModeltrain(RDD<LabeledPoint> input, double lambda) Trains a Naive Bayes model given an RDD of(label, features)pairs.static NaiveBayesModeltrain(RDD<LabeledPoint> input, double lambda, String modelType) Trains a Naive Bayes model given an RDD of(label, features)pairs.Methods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
- 
Constructor Details- 
NaiveBayespublic NaiveBayes(double lambda) 
- 
NaiveBayespublic NaiveBayes()
 
- 
- 
Method Details- 
trainTrains a Naive Bayes model given an RDD of(label, features)pairs.This is the default Multinomial NB (see here) which can handle all kinds of discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. This version of the method uses a default smoothing parameter of 1.0. - Parameters:
- input- RDD of- (label, array of features)pairs. Every vector should be a frequency vector or a count vector.
- Returns:
- (undocumented)
 
- 
trainTrains a Naive Bayes model given an RDD of(label, features)pairs.This is the default Multinomial NB (see here) which can handle all kinds of discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. - Parameters:
- input- RDD of- (label, array of features)pairs. Every vector should be a frequency vector or a count vector.
- lambda- The smoothing parameter
- Returns:
- (undocumented)
 
- 
trainTrains a Naive Bayes model given an RDD of(label, features)pairs.The model type can be set to either Multinomial NB (see here) or Bernoulli NB (see here). The Multinomial NB can handle discrete count data and can be called by setting the model type to "multinomial". For example, it can be used with word counts or TF_IDF vectors of documents. The Bernoulli model fits presence or absence (0-1) counts. By making every vector a 0-1 vector and setting the model type to "bernoulli", the fits and predicts as Bernoulli NB. - Parameters:
- input- RDD of- (label, array of features)pairs. Every vector should be a frequency vector or a count vector.
- lambda- The smoothing parameter
- modelType- The type of NB model to fit from the enumeration NaiveBayesModels, can be multinomial or bernoulli
- Returns:
- (undocumented)
 
- 
setLambdaSet the smoothing parameter. Default: 1.0.
- 
getLambdapublic double getLambda()Get the smoothing parameter.
- 
setModelTypeSet the model type using a string (case-sensitive). Supported options: "multinomial" (default) and "bernoulli".- Parameters:
- modelType- (undocumented)
- Returns:
- (undocumented)
 
- 
getModelTypeGet the model type.
- 
runRun the algorithm with the configured parameters on an input RDD of LabeledPoint entries.- Parameters:
- data- RDD of- LabeledPoint.
- Returns:
- (undocumented)
 
 
-