Class RidgeRegressionModel
Object
org.apache.spark.mllib.regression.GeneralizedLinearModel
org.apache.spark.mllib.regression.RidgeRegressionModel
- All Implemented Interfaces:
- Serializable,- PMMLExportable,- RegressionModel,- Saveable
public class RidgeRegressionModel
extends GeneralizedLinearModel
implements RegressionModel, Serializable, Saveable, PMMLExportable
Regression model trained using RidgeRegression.
 
param: weights Weights computed for every feature. param: intercept Intercept computed for this model.
- See Also:
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptiondoublestatic RidgeRegressionModelload(SparkContext sc, String path) voidsave(SparkContext sc, String path) Save this model to the given path.weights()Methods inherited from class org.apache.spark.mllib.regression.GeneralizedLinearModelpredict, predict, toStringMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.mllib.pmml.PMMLExportabletoPMML, toPMML, toPMML, toPMML, toPMMLMethods inherited from interface org.apache.spark.mllib.regression.RegressionModelpredict, predict, predict
- 
Constructor Details- 
RidgeRegressionModel
 
- 
- 
Method Details- 
load
- 
weights- Overrides:
- weightsin class- GeneralizedLinearModel
 
- 
interceptpublic double intercept()- Overrides:
- interceptin class- GeneralizedLinearModel
 
- 
saveDescription copied from interface:SaveableSave this model to the given path.This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/ The model may be loaded using Loader.load.
 
-