Class RandomForestModel
Object
org.apache.spark.mllib.tree.model.RandomForestModel
- All Implemented Interfaces:
- Serializable,- Saveable
Represents a random forest model.
 
param: algo algorithm for the ensemble model, either Classification or Regression param: trees tree ensembles
- See Also:
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionscala.Enumeration.Valuealgo()static RandomForestModelload(SparkContext sc, String path) static org.apache.spark.internal.Logging.LogStringContextLogStringContext(scala.StringContext sc) intnumTrees()Get number of trees in ensemble.static org.slf4j.Loggerstatic voidorg$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) Java-friendly version oforg.apache.spark.mllib.tree.model.TreeEnsembleModel.predict.doublePredict values for a single data point using the model trained.Predict values for the given data set.voidsave(SparkContext sc, String path) Save this model to the given path.Print the full model to a string.toString()Print a summary of the model.intGet total number of nodes, summed over all trees in the ensemble.trees()
- 
Constructor Details- 
RandomForestModel
 
- 
- 
Method Details- 
load- Parameters:
- sc- Spark context used for loading model files.
- path- Path specifying the directory to which the model was saved.
- Returns:
- Model instance
 
- 
algopublic scala.Enumeration.Value algo()
- 
trees
- 
saveDescription copied from interface:SaveableSave this model to the given path.This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/ The model may be loaded using Loader.load.
- 
org$apache$spark$internal$Logging$$log_public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_()
- 
org$apache$spark$internal$Logging$$log__$eqpublic static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) 
- 
LogStringContextpublic static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc) 
- 
predictPredict values for a single data point using the model trained.- Parameters:
- features- array representing a single data point
- Returns:
- predicted category from the trained model
 
- 
predictPredict values for the given data set.- Parameters:
- features- RDD representing data points to be predicted
- Returns:
- RDD[Double] where each entry contains the corresponding prediction
 
- 
predictJava-friendly version oforg.apache.spark.mllib.tree.model.TreeEnsembleModel.predict.- Parameters:
- features- (undocumented)
- Returns:
- (undocumented)
 
- 
toStringPrint a summary of the model.
- 
toDebugStringPrint the full model to a string.- Returns:
- (undocumented)
 
- 
numTreespublic int numTrees()Get number of trees in ensemble.- Returns:
- (undocumented)
 
- 
totalNumNodespublic int totalNumNodes()Get total number of nodes, summed over all trees in the ensemble.- Returns:
- (undocumented)
 
 
-