Class DataFrameReader
Dataset from external storage systems (e.g. file systems,
 key-value stores, etc). Use SparkSession.read to access this.
 - Since:
- 1.4.0
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionLoads a CSV file and returns the result as aDataFrame.Loads CSV files and returns the result as aDataFrame.Loads anDataset[String]storing CSV rows and returns the result as aDataFrame.Loads CSV files and returns the result as aDataFrame.Specifies the input data source format.jdbc(String url, String table, String[] predicates, Properties connectionProperties) Construct aDataFramerepresenting the database table accessible via JDBC URL url named table using connection properties.jdbc(String url, String table, String columnName, long lowerBound, long upperBound, int numPartitions, Properties connectionProperties) Construct aDataFramerepresenting the database table accessible via JDBC URL url named table.jdbc(String url, String table, Properties properties) Construct aDataFramerepresenting the database table accessible via JDBC URL url named table and connection properties.Loads a JSON file and returns the results as aDataFrame.Loads JSON files and returns the results as aDataFrame.Deprecated.Use json(Dataset[String]) instead.Deprecated.Use json(Dataset[String]) instead.Loads aDataset[String]storing JSON objects (JSON Lines text format or newline-delimited JSON) and returns the result as aDataFrame.Loads JSON files and returns the results as aDataFrame.load()Loads input in as aDataFrame, for data sources that don't require a path (e.g.Loads input in as aDataFrame, for data sources that require a path (e.g.Loads input in as aDataFrame, for data sources that support multiple paths.Loads input in as aDataFrame, for data sources that support multiple paths.Adds an input option for the underlying data source.Adds an input option for the underlying data source.Adds an input option for the underlying data source.Adds an input option for the underlying data source.Adds input options for the underlying data source.(Scala-specific) Adds input options for the underlying data source.Loads an ORC file and returns the result as aDataFrame.Loads ORC files and returns the result as aDataFrame.Loads ORC files and returns the result as aDataFrame.Loads a Parquet file, returning the result as aDataFrame.Loads a Parquet file, returning the result as aDataFrame.Loads a Parquet file, returning the result as aDataFrame.Specifies the schema by using the input DDL-formatted string.schema(StructType schema) Specifies the input schema.Returns the specified table/view as aDataFrame.Loads text files and returns aDataFramewhose schema starts with a string column named "value", and followed by partitioned columns if there are any.Loads text files and returns aDataFramewhose schema starts with a string column named "value", and followed by partitioned columns if there are any.Loads text files and returns aDataFramewhose schema starts with a string column named "value", and followed by partitioned columns if there are any.Loads text files and returns aDatasetof String.Loads text files and returns aDatasetof String.Loads text files and returns aDatasetof String.Loads a XML file and returns the result as aDataFrame.Loads XML files and returns the result as aDataFrame.Loads anDataset[String]storing XML object and returns the result as aDataFrame.Loads XML files and returns the result as aDataFrame.
- 
Constructor Details- 
DataFrameReaderpublic DataFrameReader()
 
- 
- 
Method Details- 
csvLoads CSV files and returns the result as aDataFrame.This function will go through the input once to determine the input schema if inferSchemais enabled. To avoid going through the entire data once, disableinferSchemaoption or specify the schema explicitly usingschema.You can find the CSV-specific options for reading CSV files in Data Source Option in the version you use. - Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
csvLoads a CSV file and returns the result as aDataFrame. See the documentation on the other overloadedcsv()method for more details.- Parameters:
- path- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
csvLoads anDataset[String]storing CSV rows and returns the result as aDataFrame.If the schema is not specified using schemafunction andinferSchemaoption is enabled, this function goes through the input once to determine the input schema.If the schema is not specified using schemafunction andinferSchemaoption is disabled, it determines the columns as string types and it reads only the first line to determine the names and the number of fields.If the enforceSchema is set to false, only the CSV header in the first line is checked to conform specified or inferred schema.- Parameters:
- csvDataset- input Dataset with one CSV row per record
- Returns:
- (undocumented)
- Since:
- 2.2.0
- Note:
- if headeroption is set totruewhen calling this API, all lines same with the header will be removed if exists.
 
- 
csvLoads CSV files and returns the result as aDataFrame.This function will go through the input once to determine the input schema if inferSchemais enabled. To avoid going through the entire data once, disableinferSchemaoption or specify the schema explicitly usingschema.You can find the CSV-specific options for reading CSV files in Data Source Option in the version you use. - Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
formatSpecifies the input data source format.- Parameters:
- source- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
jdbcConstruct aDataFramerepresenting the database table accessible via JDBC URL url named table and connection properties.You can find the JDBC-specific option and parameter documentation for reading tables via JDBC in Data Source Option in the version you use. - Parameters:
- url- (undocumented)
- table- (undocumented)
- properties- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
jdbcpublic Dataset<Row> jdbc(String url, String table, String columnName, long lowerBound, long upperBound, int numPartitions, Properties connectionProperties) Construct aDataFramerepresenting the database table accessible via JDBC URL url named table. Partitions of the table will be retrieved in parallel based on the parameters passed to this function.Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash your external database systems. You can find the JDBC-specific option and parameter documentation for reading tables via JDBC in Data Source Option in the version you use. - Parameters:
- table- Name of the table in the external database.
- columnName- Alias of- partitionColumnoption. Refer to- partitionColumnin Data Source Option in the version you use.
- connectionProperties- JDBC database connection arguments, a list of arbitrary string tag/value. Normally at least a "user" and "password" property should be included. "fetchsize" can be used to control the number of rows per fetch and "queryTimeout" can be used to wait for a Statement object to execute to the given number of seconds.
- url- (undocumented)
- lowerBound- (undocumented)
- upperBound- (undocumented)
- numPartitions- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
jdbcpublic abstract Dataset<Row> jdbc(String url, String table, String[] predicates, Properties connectionProperties) Construct aDataFramerepresenting the database table accessible via JDBC URL url named table using connection properties. Thepredicatesparameter gives a list expressions suitable for inclusion in WHERE clauses; each one defines one partition of theDataFrame.Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash your external database systems. You can find the JDBC-specific option and parameter documentation for reading tables via JDBC in Data Source Option in the version you use. - Parameters:
- table- Name of the table in the external database.
- predicates- Condition in the where clause for each partition.
- connectionProperties- JDBC database connection arguments, a list of arbitrary string tag/value. Normally at least a "user" and "password" property should be included. "fetchsize" can be used to control the number of rows per fetch.
- url- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
jsonLoads JSON files and returns the results as aDataFrame.JSON Lines (newline-delimited JSON) is supported by default. For JSON (one record per file), set the multiLineoption to true.This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan. You can find the JSON-specific options for reading JSON files in Data Source Option in the version you use. - Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
jsonLoads a JSON file and returns the results as aDataFrame.See the documentation on the overloaded json()method with varargs for more details.- Parameters:
- path- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
jsonLoads JSON files and returns the results as aDataFrame.JSON Lines (newline-delimited JSON) is supported by default. For JSON (one record per file), set the multiLineoption to true.This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan. You can find the JSON-specific options for reading JSON files in Data Source Option in the version you use. - Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
jsonLoads aDataset[String]storing JSON objects (JSON Lines text format or newline-delimited JSON) and returns the result as aDataFrame.Unless the schema is specified using schemafunction, this function goes through the input once to determine the input schema.- Parameters:
- jsonDataset- input Dataset with one JSON object per record
- Returns:
- (undocumented)
- Since:
- 2.2.0
 
- 
jsonDeprecated.Use json(Dataset[String]) instead. Since 2.2.0.Loads aJavaRDD[String]storing JSON objects (JSON Lines text format or newline-delimited JSON) and returns the result as aDataFrame.Unless the schema is specified using schemafunction, this function goes through the input once to determine the input schema.- Parameters:
- jsonRDD- input RDD with one JSON object per record
- Returns:
- (undocumented)
- Since:
- 1.4.0
- Note:
- this method is not supported in Spark Connect.
 
- 
jsonDeprecated.Use json(Dataset[String]) instead. Since 2.2.0.Loads anRDD[String]storing JSON objects (JSON Lines text format or newline-delimited JSON) and returns the result as aDataFrame.Unless the schema is specified using schemafunction, this function goes through the input once to determine the input schema.- Parameters:
- jsonRDD- input RDD with one JSON object per record
- Returns:
- (undocumented)
- Since:
- 1.4.0
- Note:
- this method is not supported in Spark Connect.
 
- 
loadLoads input in as aDataFrame, for data sources that support multiple paths. Only works if the source is a HadoopFsRelationProvider.- Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.6.0
 
- 
loadLoads input in as aDataFrame, for data sources that don't require a path (e.g. external key-value stores).- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
loadLoads input in as aDataFrame, for data sources that require a path (e.g. data backed by a local or distributed file system).- Parameters:
- path- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
loadLoads input in as aDataFrame, for data sources that support multiple paths. Only works if the source is a HadoopFsRelationProvider.- Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.6.0
 
- 
optionAdds an input option for the underlying data source.All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option. - Parameters:
- key- (undocumented)
- value- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
optionAdds an input option for the underlying data source.All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option. - Parameters:
- key- (undocumented)
- value- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
optionAdds an input option for the underlying data source.All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option. - Parameters:
- key- (undocumented)
- value- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
optionAdds an input option for the underlying data source.All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option. - Parameters:
- key- (undocumented)
- value- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
options(Scala-specific) Adds input options for the underlying data source.All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option. - Parameters:
- options- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
optionsAdds input options for the underlying data source.All options are maintained in a case-insensitive way in terms of key names. If a new option has the same key case-insensitively, it will override the existing option. - Parameters:
- opts- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
orcLoads ORC files and returns the result as aDataFrame.ORC-specific option(s) for reading ORC files can be found in Data Source Option in the version you use. - Parameters:
- paths- input paths
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
orcLoads an ORC file and returns the result as aDataFrame.- Parameters:
- path- input path
- Returns:
- (undocumented)
- Since:
- 1.5.0
 
- 
orcLoads ORC files and returns the result as aDataFrame.ORC-specific option(s) for reading ORC files can be found in Data Source Option in the version you use. - Parameters:
- paths- input paths
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
parquetLoads a Parquet file, returning the result as aDataFrame.Parquet-specific option(s) for reading Parquet files can be found in Data Source Option in the version you use. - Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
parquetLoads a Parquet file, returning the result as aDataFrame. See the documentation on the other overloadedparquet()method for more details.- Parameters:
- path- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
parquetLoads a Parquet file, returning the result as aDataFrame.Parquet-specific option(s) for reading Parquet files can be found in Data Source Option in the version you use. - Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
schemaSpecifies the input schema. Some data sources (e.g. JSON) can infer the input schema automatically from data. By specifying the schema here, the underlying data source can skip the schema inference step, and thus speed up data loading.- Parameters:
- schema- (undocumented)
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
schemaSpecifies the schema by using the input DDL-formatted string. Some data sources (e.g. JSON) can infer the input schema automatically from data. By specifying the schema here, the underlying data source can skip the schema inference step, and thus speed up data loading.spark.read.schema("a INT, b STRING, c DOUBLE").csv("test.csv")- Parameters:
- schemaString- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.3.0
 
- 
tableReturns the specified table/view as aDataFrame. If it's a table, it must support batch reading and the returned DataFrame is the batch scan query plan of this table. If it's a view, the returned DataFrame is simply the query plan of the view, which can either be a batch or streaming query plan.- Parameters:
- tableName- is either a qualified or unqualified name that designates a table or view. If a database is specified, it identifies the table/view from the database. Otherwise, it first attempts to find a temporary view with the given name and then match the table/view from the current database. Note that, the global temporary view database is also valid here.
- Returns:
- (undocumented)
- Since:
- 1.4.0
 
- 
textLoads text files and returns aDataFramewhose schema starts with a string column named "value", and followed by partitioned columns if there are any. The text files must be encoded as UTF-8.By default, each line in the text files is a new row in the resulting DataFrame. For example: // Scala: spark.read.text("/path/to/spark/README.md") // Java: spark.read().text("/path/to/spark/README.md")You can find the text-specific options for reading text files in Data Source Option in the version you use. - Parameters:
- paths- input paths
- Returns:
- (undocumented)
- Since:
- 1.6.0
 
- 
textLoads text files and returns aDataFramewhose schema starts with a string column named "value", and followed by partitioned columns if there are any. See the documentation on the other overloadedtext()method for more details.- Parameters:
- path- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
textLoads text files and returns aDataFramewhose schema starts with a string column named "value", and followed by partitioned columns if there are any. The text files must be encoded as UTF-8.By default, each line in the text files is a new row in the resulting DataFrame. For example: // Scala: spark.read.text("/path/to/spark/README.md") // Java: spark.read().text("/path/to/spark/README.md")You can find the text-specific options for reading text files in Data Source Option in the version you use. - Parameters:
- paths- input paths
- Returns:
- (undocumented)
- Since:
- 1.6.0
 
- 
textFileLoads text files and returns aDatasetof String. The underlying schema of the Dataset contains a single string column named "value". The text files must be encoded as UTF-8.If the directory structure of the text files contains partitioning information, those are ignored in the resulting Dataset. To include partitioning information as columns, use text.By default, each line in the text files is a new row in the resulting DataFrame. For example: // Scala: spark.read.textFile("/path/to/spark/README.md") // Java: spark.read().textFile("/path/to/spark/README.md")You can set the text-specific options as specified in DataFrameReader.text.- Parameters:
- paths- input path
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
textFileLoads text files and returns aDatasetof String. See the documentation on the other overloadedtextFile()method for more details.- Parameters:
- path- (undocumented)
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
textFileLoads text files and returns aDatasetof String. The underlying schema of the Dataset contains a single string column named "value". The text files must be encoded as UTF-8.If the directory structure of the text files contains partitioning information, those are ignored in the resulting Dataset. To include partitioning information as columns, use text.By default, each line in the text files is a new row in the resulting DataFrame. For example: // Scala: spark.read.textFile("/path/to/spark/README.md") // Java: spark.read().textFile("/path/to/spark/README.md")You can set the text-specific options as specified in DataFrameReader.text.- Parameters:
- paths- input path
- Returns:
- (undocumented)
- Since:
- 2.0.0
 
- 
xmlLoads XML files and returns the result as aDataFrame.This function will go through the input once to determine the input schema if inferSchemais enabled. To avoid going through the entire data once, disableinferSchemaoption or specify the schema explicitly usingschema.You can find the XML-specific options for reading XML files in Data Source Option in the version you use. - Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 4.0.0
 
- 
xmlLoads a XML file and returns the result as aDataFrame. See the documentation on the other overloadedxml()method for more details.- Parameters:
- path- (undocumented)
- Returns:
- (undocumented)
- Since:
- 4.0.0
 
- 
xmlLoads XML files and returns the result as aDataFrame.This function will go through the input once to determine the input schema if inferSchemais enabled. To avoid going through the entire data once, disableinferSchemaoption or specify the schema explicitly usingschema.You can find the XML-specific options for reading XML files in Data Source Option in the version you use. - Parameters:
- paths- (undocumented)
- Returns:
- (undocumented)
- Since:
- 4.0.0
 
- 
xmlLoads anDataset[String]storing XML object and returns the result as aDataFrame.If the schema is not specified using schemafunction andinferSchemaoption is enabled, this function goes through the input once to determine the input schema.- Parameters:
- xmlDataset- input Dataset with one XML object per record
- Returns:
- (undocumented)
- Since:
- 4.0.0
 
 
-