pyspark.pandas.MultiIndex#
- class pyspark.pandas.MultiIndex(levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity=True)[source]#
- pandas-on-Spark MultiIndex that corresponds to pandas MultiIndex logically. This might hold Spark Column internally. - Parameters
- levelssequence of arrays
- The unique labels for each level. 
- codessequence of arrays
- Integers for each level designating which label at each location. 
- sortorderoptional int
- Level of sortedness (must be lexicographically sorted by that level). 
- namesoptional sequence of objects
- Names for each of the index levels. (name is accepted for compat). 
- copybool, default False
- Copy the meta-data. 
- verify_integritybool, default True
- Check that the levels/codes are consistent and valid. 
 
 - See also - MultiIndex.from_arrays
- Convert list of arrays to MultiIndex. 
- MultiIndex.from_product
- Create a MultiIndex from the cartesian product of iterables. 
- MultiIndex.from_tuples
- Convert list of tuples to a MultiIndex. 
- MultiIndex.from_frame
- Make a MultiIndex from a DataFrame. 
- Index
- A single-level Index. 
 - Examples - >>> ps.DataFrame({'a': ['a', 'b', 'c']}, index=[[1, 2, 3], [4, 5, 6]]).index MultiIndex([(1, 4), (2, 5), (3, 6)], ) - >>> ps.DataFrame({'a': [1, 2, 3]}, index=[list('abc'), list('def')]).index MultiIndex([('a', 'd'), ('b', 'e'), ('c', 'f')], ) - Methods - all(*args, **kwargs)- Return whether all elements are True. - any(*args, **kwargs)- Return whether any element is True. - append(other)- Append a collection of Index options together. - argmax()- Return a maximum argument indexer. - argmin()- Return a minimum argument indexer. - asof(label)- Return the label from the index, or, if not present, the previous one. - astype(dtype)- Cast a pandas-on-Spark object to a specified dtype - dtype.- copy([deep])- Make a copy of this object. - delete(loc)- Make new Index with passed location(-s) deleted. - difference(other[, sort])- Return a new Index with elements from the index that are not in other. - drop(codes[, level])- Make new MultiIndex with passed list of labels deleted - drop_duplicates([keep])- Return MultiIndex with duplicate values removed. - droplevel(level)- Return index with requested level(s) removed. - dropna([how])- Return Index or MultiIndex without NA/NaN values - equal_levels(other)- Return True if the levels of both MultiIndex objects are the same - equals(other)- Determine if two Index objects contain the same elements. - factorize([sort, na_sentinel])- Encode the object as an enumerated type or categorical variable. - fillna(value)- Fill NA/NaN values with the specified value. - from_arrays(arrays[, sortorder, names])- Convert arrays to MultiIndex. - from_frame(df[, names])- Make a MultiIndex from a DataFrame. - from_product(iterables[, sortorder, names])- Make a MultiIndex from the cartesian product of multiple iterables. - from_tuples(tuples[, sortorder, names])- Convert list of tuples to MultiIndex. - get_level_values(level)- Return vector of label values for requested level, equal to the length of the index. - holds_integer()- Whether the type is an integer type. - identical(other)- Similar to equals, but check that other comparable attributes are also equal. - insert(loc, item)- Make new MultiIndex inserting new item at location. - intersection(other)- Form the intersection of two Index objects. - is_boolean()- Return if the current index type is a boolean type. - is_categorical()- Return if the current index type is a categorical type. - is_floating()- Return if the current index type is a floating type. - is_integer()- Return if the current index type is an integer type. - is_interval()- Return if the current index type is an interval type. - is_numeric()- Return if the current index type is a numeric type. - is_object()- Return if the current index type is an object type. - isin(values)- Check whether values are contained in Series or Index. - isna()- Detect existing (non-missing) values. - isnull()- Detect existing (non-missing) values. - item()- Return the first element of the underlying data as a python tuple. - map([mapper, na_action])- Map values using input correspondence (a dict, Series, or function). - max()- Return the maximum value of the Index. - min()- Return the minimum value of the Index. - notna()- Detect existing (non-missing) values. - notnull()- Detect existing (non-missing) values. - nunique([dropna, approx, rsd])- Return number of unique elements in the object. - rename(name[, inplace])- Alter Index or MultiIndex name. - repeat(repeats)- Repeat elements of a Index/MultiIndex. - set_names(names[, level, inplace])- Set Index or MultiIndex name. - shift([periods, fill_value])- Shift Series/Index by desired number of periods. - sort(*args, **kwargs)- Use sort_values instead. - sort_values([return_indexer, ascending])- Return a sorted copy of the index, and optionally return the indices that sorted the index itself. - swaplevel([i, j])- Swap level i with level j. - symmetric_difference(other[, result_name, sort])- Compute the symmetric difference of two MultiIndex objects. - take(indices)- Return the elements in the given positional indices along an axis. - to_frame([index, name])- Create a DataFrame with the levels of the MultiIndex as columns. - to_list()- Return a list of the values. - to_numpy([dtype, copy])- A NumPy ndarray representing the values in this Index or MultiIndex. - to_pandas()- Return a pandas MultiIndex. - to_series([name])- Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index. - tolist()- Return a list of the values. - transpose()- Return the transpose, For index, It will be index itself. - union(other[, sort])- Form the union of two Index objects. - unique([level])- Return unique values in the index. - value_counts([normalize, sort, ascending, ...])- Return a Series containing counts of unique values. - view()- this is defined as a copy with the same identity - Attributes - Return the transpose, For index, It will be index itself. - dtype- Return the dtype object of the underlying data. - Return the dtypes as a Series for the underlying MultiIndex. - Returns true if the current object is empty. - If index has duplicates, return True, otherwise False. - Return True if it has any missing values. - Return a string of the type inferred from the values. - is_monotonic_decreasing- Return boolean if values in the object are monotonically decreasing. - is_monotonic_increasing- Return boolean if values in the object are monotonically increasing. - is_unique- Return if the index has unique values. - A tuple with the length of each level. - name- Return name of the Index. - Return names of the Index. - Return an int representing the number of array dimensions. - Number of levels in Index & MultiIndex. - Return a tuple of the shape of the underlying data. - Return an int representing the number of elements in this object. - Return an array representing the data in the Index.