pyspark.sql.DataFrame.agg#
- DataFrame.agg(*exprs)[source]#
- Aggregate on the entire - DataFramewithout groups (shorthand for- df.groupBy().agg()).- New in version 1.3.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- exprsColumnor dict of key and value strings
- Columns or expressions to aggregate DataFrame by. 
 
- exprs
- Returns
- DataFrame
- Aggregated DataFrame. 
 
 - Examples - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) >>> df.agg({"age": "max"}).show() +--------+ |max(age)| +--------+ | 5| +--------+ >>> df.agg(sf.min(df.age)).show() +--------+ |min(age)| +--------+ | 2| +--------+